Hypertherm®

HyDefinition HD3070®

Manual Gas Console Upgrade

Field Service Bulletin (P/N 803110)

Revision 2 April, 2002

Hypertherm, Inc. Hanover, NH USA www.hypertherm.com

© Copyright 2002 Hypertherm, Inc. All Rights Reserved

Hypertherm and HyDefinition are trademarks of Hypertherm, Inc. and may be registered in the United States and/or other countries

Hypertherm

TABLE OF CONTENTS

Introduction	
Tools Required	
Upgrade Kits	
Procedure	
Remove Old Gas Console and Off-Valve	
Install New Gas Console and Off-Valve	
Power Supply Control Board Upgrade	8
Gas Console Controls and Indicators	
Daily Start-Up Procedure	
Operating Data (Cut) Charts	
Operating Data (Cut) Charts	

Introduction

This field bulletin describes how to perform the required procedures below in order to complete this upgrade:

- Replace the existing manual gas console with the new manual gas console.
- Replace the existing off-valve with the new off-valve.
- Upgrade the HD3070 power supply control board.

Tools Required

2 Phillips head screwdriver
7/16-inch open end wrench
5/8-inch open end wrench
11/16-inch open end wrench
3/4-inch open end wrench
5/32-inch (4 mm) hex wrench
008197 Connector Pin Extractor Tool*

*Included in Kit

Upgrade Kits

The manual gas console upgrade kits are listed below. The kit part number is determined by the gas lead length required (between gas console and off-valve).

Upgrade Kit Part No.	Gas Lead Part No.	
128258	128175 – 15 ft (4.6 m)	
128259	128176 – 20 ft (6.1 m)	
128260	128177 – 25 ft (7.6 m)	
128261	128178 – 30 ft (9.1 m)	
128262	128179 – 35 ft (10.6 m)	
128263	128180 – 40 ft (12.2 m)	
128264	128181 – 50 ft (15.2 m)	
128265	128182 – 75 ft (23 m)	
128266	128183 – 100 ft (30.5 m)	
Kit Contents		
Part No.	Description	Quantity
078059	Manual Gas Console	1
128175 - 128183	Gas Leads (see above)	1
129239	Off-Valve	1
123256	Off-Valve Cable (part of 129239)	1
041753	Manual Gas Console Control Board	1
123387	Jumper Wire	1
008197	Tool: Connector Pin Extractor	1
803110	Field Bulletin, HD3070 Automatic Gas Console Upgrade	1

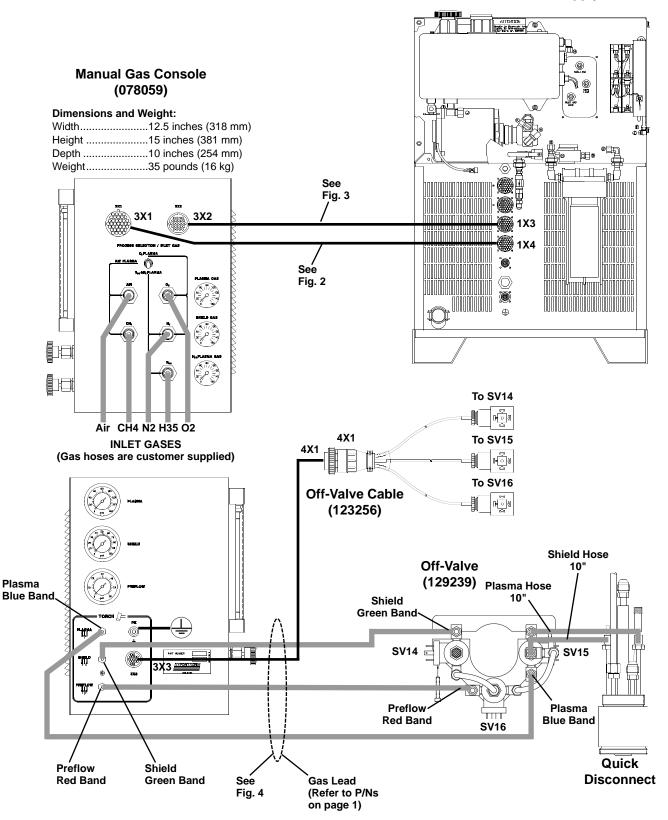
Procedure

WARNING

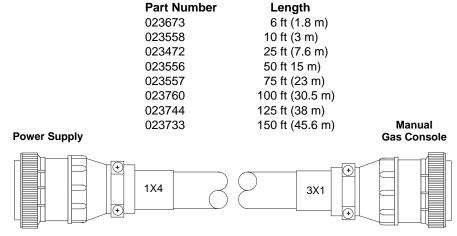
Turn off all power to HD3070 system. Always press the power unit OFF (O) pushbutton switch and set the line disconnect switch to Off. Lock-out and tag-out switch.

Remove Old Gas Console and Off-Valve

- 1. At the gas suppliy cylinders shut the gases off.
- 2. At the gas console
 - Disconnect the inlet gas hoses.
 - Disconnect the gas lead hoses and control cable plug 3X3.
 - Disconnect control cable plugs 3X1 and 3X2.
 - Disconnect the PE ground wire.
 - Remove the gas console.

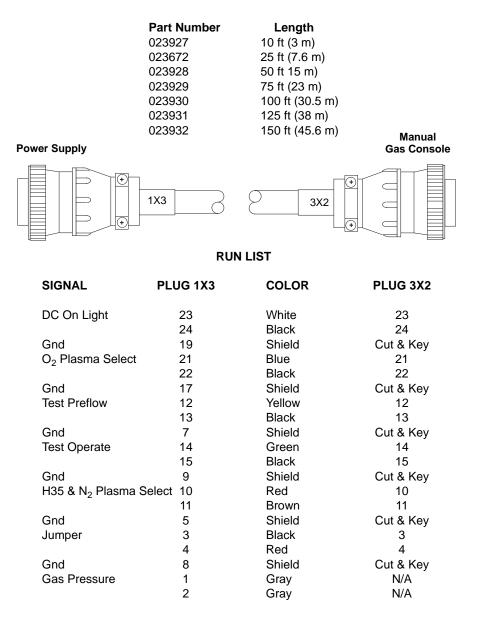

3. At the off-valve

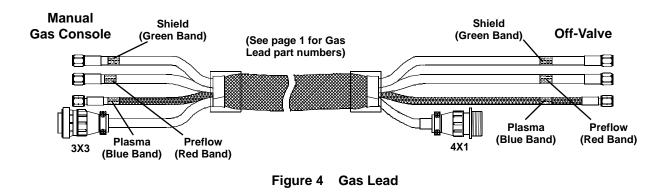
- Disconnect the gas lead hoses and control cable plug 4X1. (Discard gas lead.)
- Disconnect the 10-inch plasma and shield gas hoses.
- Disconnect the PE ground wire.
- Remove off-valve and discard.


Install New Gas Console and Off-Valve

- 1. At the gas console
 - Connect the inlet gas hoses.
 - Connect the new gas lead hoses and control cable plug 3X3.
 - Connect control cable plugs 3X1 and 3X2.
 - Connect the PE ground wire.
- 2. At the off-valve
 - Connect the gas lead hoses and control cable plug 4X1.
 - Connect the 10-inch plasma and shield gas hoses.
 - Connect the PE ground wire.

HD3070 Power Supply




RUN LIST

SIGNAL	PLUG 1X4	COLOR	PLUG 3X1
Spare Valve # 1	14	Black	14
	15	Green	15
Gnd	9	Shield	9
Shield Operate	12	Black	12
	13	Yellow	13
Gnd	7	Shield	7
Air and CH ₄	23	Black	23
	24	Blue	24
Gnd	29	Shield	29
Shield Preflow	10	Black	10
	11	Orange	11
Gnd	5	Shield	5
H35 and N ₂	25	Black	25
	26	White	26
Gnd	31	Shield	31
Plasma On & Off	1	Black	1
	2	Brown	2
Gnd	6	Shield	6
O_2 and N_2	27	Red	27
	28	Brown	28
Gnd	33	Shield	33
Unassigned	3	Black	3
	4	Red	4
Gnd	8	Shield	8
Gas System Power	36	Red	36
	37	Brown	37
Gnd	32	Shield	32
Unassigned	34	Black	34
	35	Red	35
Gnd	30	Shield	30
Key	N/A	N/A	16

Figure 2 Control Cable 1X4/3X1

Power Supply Control Board Upgrade

- 1. Remove front cover from power supply.
- 2. Locate control board 1XPCB3 (See figure 5).
- 3. Remove old board and install new board.

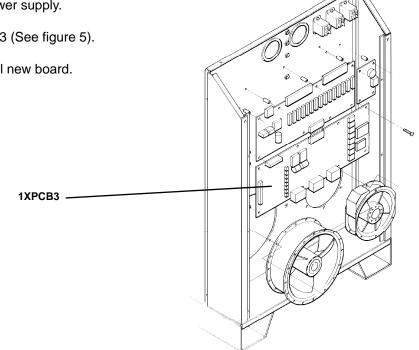


Figure 5 Power Supply Control Board 1XPCB3 and Firmware IC (U9) Locations

- 4. Install 123387 jumper wire to Power Supply 1XPCB3 Control Board (Figure 6):
 - a. Remove plug PL11 and PL10 from the 1XPCB3 control board.
 - b. Using pin extractor tool 008197:

Remove pin 12 from plug PL11.

Remove pin 3 from plug PL10.

- c. Insert 123387 jumper wire into pin hole 3 of plug PL10.
- d. Insert 123387 jumper wire into hole 12 of plug PL11.
- e. Install plug PL11 and PL10 to the 1XPCB3 control board.
- 5. Replace power supply front cover.

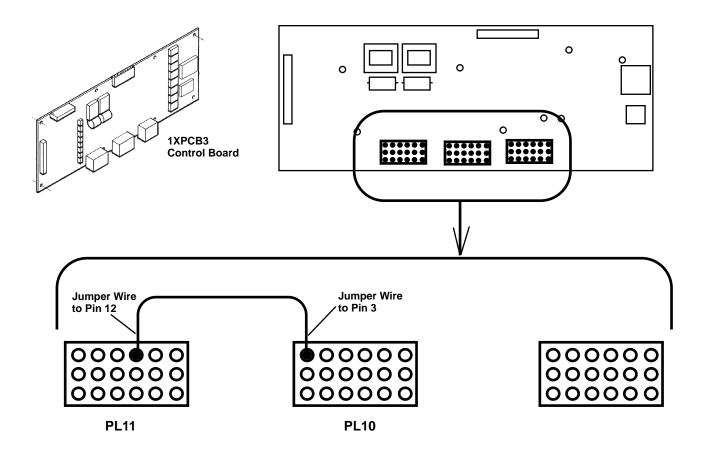


Figure 6 Install Jumper Wire to Control Board Plugs

Gas Console Controls and Indicators

Process Selection/Inlet Gas

• Inlet Gas pressure gauges (PG1, PG2 and PG3)

H35 Plasma Gas gauge (PG1) indicates the H35 inlet supply pressure of 120 psi (8.2 bar). Plasma Gas gauge (PG2) indicates the O_2 or Air inlet supply pressure of 120 psi (8.2 bar). Shield Gas gauge (PG3) indicates the N_2 or CH_4 inlet supply pressure of 120 psi (8.2 bar).

• Air Plasma/O₂ Plasma/H35 & N₂ Plasma gas selector toggle switch (S1)

Air Plasma (White) - This position selects air as the plasma gas.
 O₂ Plasma (Red) - This position selects oxygen as the plasma gas.
 H35 & N₂ Plasma (Blue) - This position selects a mixture of argon-hydrogen and nitrogen as the plasma gas.

Test Cutflow/Run/Test Preflow toggle switch (S2)

This switch is used to set test preflow and test cut flowrates using the controls described below. Test preflow and test cut flowrates are specified in *Cut Charts*. In both the test preflow or test position the contactor is disabled, so that current is not delivered to the electrode and the arc cannot be fired. The Run position enables normal operation after the test prefow and test cut flowrates have been set.

Test Cutflow

PLASMA metering valves (MV1 and MV2) set the test cut flowrates on flowmeters (FM1 and FM2) for selected plasma gases. **Motor valve MV1 and flowmeter FM1 only operate when H35 is selected.**

PLASMA pressure gauge (PG4) indicates the pressure (psi) of the set plasma gas test cut flowrate. If correct flowrate values cannot be obtained, PG4 and refer to Section 5, *Maintenance* to perform gas system back pressure checks.

SHIELD metering valves MV3 and MV4 set the test cut flowrates on flowmeters FM3 and FM4 for selected shield gases.

SHIELD pressure gauge (PG5) indicates the pressure of the set shield gas test cut flowrates. If correct flowrate values cannot be obtained, PG5 and refer to Section 5, *Maintenance* to perform gas system back pressure checks.

• Test Preflow

PREFLOW metering valves (MV5 and MV6) set the test preflow flowrates on flowmeters (FM3 and FM4) for selected gases.

PREFLOW pressure gauge (PG6) indicates the pressure (psi) of the set test preflow flowrates. If correct flowrate values cannot be obtained, PG6 and refer to Section 5, *Maintenance* to perform gas system back pressure checks.

• RUN

This position enables the contactor and the subsquent firing of the arc after the gas flowrates have been set in the **TEST PRE** and **TEST CUT** modes.

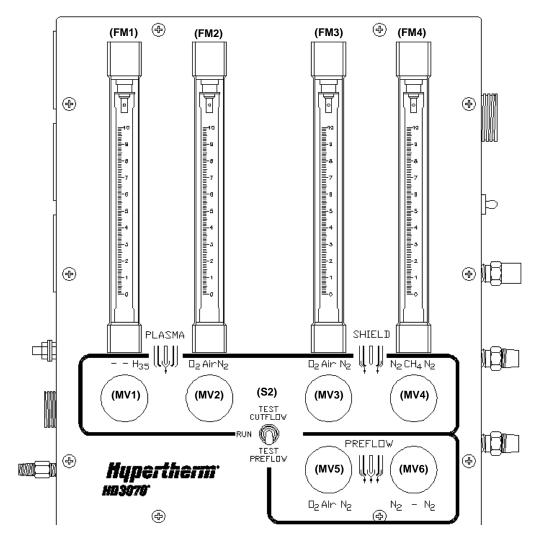
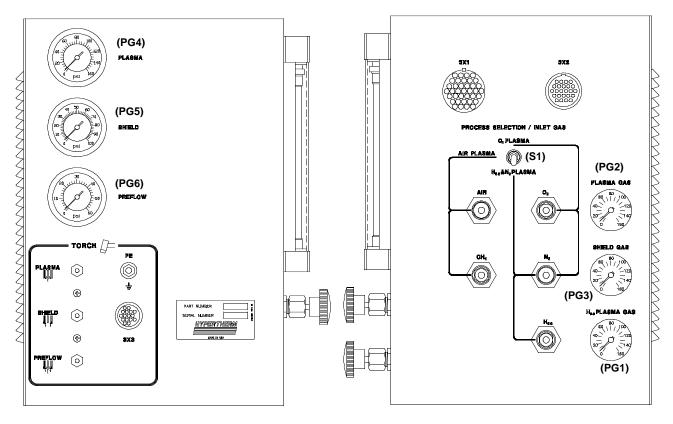



Figure 7 Controls and Indicators (1 of 2)

Left Side

Right Side

Figure 8 Controls and Indicators (2 of 2)

Daily Start-Up Procedure

Prior to start-up, ensure that your cutting environment and that your clothing meet the safety requirements outlined in the Instruction Manual, Section 1, *Safety*. If problems occur during start-up, refer to the Instruction Manual, Section 3, *Installation* to check installation requirements and procedures. The daily start-up procedure involves setting up the system for cutting as follows:

- 1. Check that the consumable parts are not worn or damaged. Refer to *Changing Consumable Parts* in the Instruction Manual.
- 2. Select cutting current at the AMPS thumbwheel (S1).

Always use the cutting current for which the consumables are rated. For example, do not select 25 or 35 amps for 30 amp consumables. Cutting at a current other than the rated current will cause excessive consumable wear and unpredictable cutting performance. It will also be more difficult to troubleshoot cutting faults, since baseline data does not exist for other than the 30 amp current.

- 3. Ensure that the torch is at right angles to the workpiece to get a clean, vertical cut. Use a square to align the torch. The torch should be aligned at 0° and 90°.
- 4. Set initial torch height using the suggested initial height data from the Cut Charts.

Torch initial height sensing should be accurate and consistent for good electrode and nozzle life. When the initial height is too high, the pilot arc is prevented or prolonged from transferring to the cutting arc. When the initial height is too low, pierce slag can build up on the shield increasing the chance for a double- arc on subsquent starts. If a pierce is made with the shield touching the workpiece, the molten slag will be forced between the nozzle and shield, rendering the shield gas useless and probably ruining the shield and nozzle.

5. Set arc voltage on torch height control unit (THC), which is customer supplied, using the suggested arc voltage data from the *Cut Charts*. One (1) arc volt equals approximately .005 inches (.127 mm).

Arc voltage is typically how the torch height is maintained above the workpiece during a cut. A higher arc voltage will maintain a higher standoff between the torch and workpiece. The arc voltage potential is between the tip of the electrode (actually the bottom of the pit in the hafnium element) and the workpiece being cut. As the electrode tip wears, a pit is formed and the arc voltage may have to be increased to compensate for the longer distance that now exists between the bottom of the pit and the workpiece.

For example, after a few hundred starts, the torch will ride closer to the workpiece causing an undercut cut edge. To correct the undercut, simply increase the arc voltage setting by a couple of arc volts. The torch standoff distance will increase, and cut quality will return.

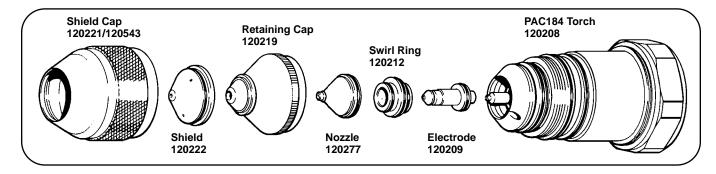
- 6. Set the pierce delay **PIERCE DELAY** potentiometer (P1) to the suggested pierce delay data on the Cut Charts.
- 7. Ensure that the gas inlet supplies are connected and available at 120 psi (8.2 bar) on the **INLET GAS** pressure gauges (PG1, PG2 and PG3). It is important to keep equal values of the pressures to obtain the correct mixtures of the gases.
- 8. Select the plasma gas with the **PROCESS SELECTION** toggle switch (S1) on the gas console right side panel.
- 9. Set the main disconnect switch for the power supply to **On**.
- 10. Turn on the power supply by depressing the **POWER ON (1)** switch (PB1). Ensure the green **POWER ON** indicator (LT1) lights. If not check the **STATUS** LEDs. Refer to *Front Panel Controls and Indicators* in the HD3070 instruction manual IM-217.

- 11. Set **TEST CUTFLOW/RUN/TEST PREFLOW** toggle switch (S2) on the gas console to **TEST CUTFLOW** to check the flowrates for cutting. To do this, proceed as follows:
 - Note: The metering valves normally turn hard. Do not loosen the packing nut around the valve stems to make the valves turn more easily. Loosening the packing nuts breaks the seals and allows gases to leak out around the valve stems. The packing nuts should be 1/4 to 3/4 of a turn past finger-tight.
 - Turn the **PLASMA** gas metering valves MV1 and MV2 to set flowrates on flowmeters FM1 and FM2. Refer to the *Cut Charts*. Motor valve MV1 and flowmeter FM1 only operate when H35 is selected.
 - Turn the **SHIELD** gas metering valves MV3 and MV4 to set flowrates on flowmeters FM3 and FM4. Refer to the *Cut Charts*.
- 12. Set switch (S2) to **TEST PREFIOW** to set the preflow flowrates. To do this, procced as follows:
 - Turn the **PREFLOW** metering valves MV5 and MV6 to set the flowrates on flowmeters FM3 and FM4. Refer to the *Cut Charts.*
- 13. If correct flowrate values cannot be obtained, check the associated pressure gauges on the left side of the gas console to check the back pressure. Refer to the Instruction Manual, Section 5, *Maintenance* to perform the gas system back pressure check.
- 14. The system is now ready for operation.

Operating Data (Cut) Charts

The *Cut Charts* on the following pages are optimized to provide the best cut angle, least dross and best cut surface finish. Keep in mind that these charts provide a good starting point and that optimum cutting must be tuned to the application and materials on site. Increasing cut speed, lowering the torch standoff, higher current consumables on thinner metals or increasing the oxygen ratio in the shield mix, for example, all present certain tradeoffs as mentioned in *How to Get Better Cut Quality* in the Instruction Manual. Depending on the cutting application, it is up to the operator to determine if the tradeoffs are acceptable.

The cut charts also provide part numbers and illustrations of the consumables required to cut at specific amperages. For more detailed information, refer to the gas console control and indicator descriptions and the daily start-up procedure at the front of this section.


Material	Current	Plasma Gas	Shield Gas	Page
		PAC184 Torch		
Mild Steel	15 Amp	O2	O2 & N2	16
	30 Amp	O2	O2 & N2	17
		PAC186 Torch		
Mild Steel	15 Amp	O2	O2 & N2	18
	30 Amp	02	O2 & N2	19
	50 Amp	O2	O2 & N2	21
	70 Amp	O2	O2 & N2	24
	100 Amp	O2	O2 & N2	28
Stainless Steel	30 Amp	Air	Air	20
	50 Amp	Air	Air	22
	70 Amp	Air	Air & CH4	25
	100 Amp	H35 & N2	N2	29
Aluminum	70 Amp	Air	CH4	26
	100 Amp	H35 & N2	N2	30
Copper	50 Amp	O2	O2 & N2	23
	70 Amp	O2	O2 & N2	27

Cut Chart Index

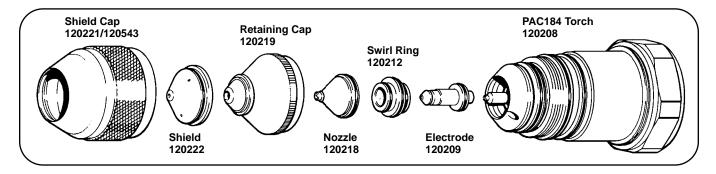
Mild Steel

O₂ Plasma / O₂ & N₂ Shield

15 Amp Cutting

				Test Flowra)		reflow* ites (%)						Ini	tial		
(GA	Materia Thickne) (in)		—	sma O ₂ ed)	O ₂	ield N ₂ ed)	0 ₂	flow N ₂ ed)	Arc Voltage (volts)	Tor Stand (in)			Fravel Speed (m/min)	Pier		-	rce lay (sec)
26	0.018	0.5	_	40	30	10	5	75	134	0.020	0.5	145	3.68	0.040	1.0	0	0.05
24	0.024	0.6	—	40	30	10	5	75	135	0.020	0.5	129	3.28	0.040	1.0	0	0.05
22	0.030	0.8	—	40	30	10	5	75	136	0.020	0.5	115	2.92	0.040	1.0	0	0.05
20	0.036	0.9	—	40	30	10	5	75	136	0.020	0.5	100	2.54	0.040	1.0	0	0.05
18	0.048	1.3	—	40	30	10	5	75	137	0.020	0.5	85	2.16	0.040	1.0	0.5	0.16
16	0.060	1.5	—	40	30	10	5	75	142	0.030	0.8	65	1.65	0.040	1.0	1	0.27
14	0.075	1.9	—	40	30	10	5	75	144	0.040	1.0	45	1.14	0.060	1.5	1.5	0.37
12	0.105	2.7	—	40	30	10	5	75	148	0.040	1.0	35	0.90	0.060	1.5	2	0.50
10	0.135	3.4	—	40	30	10	5	75	151	0.040	1.0	25	0.64	0.060	1.5	2.5	0.60

O2 and N2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

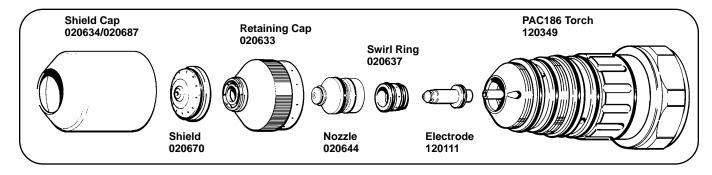
Mild Steel

O₂ Plasma / O₂ & N₂ Shield

30 Amp Cutting

				Test Flowra)		reflow* ites (%)						Ini	tial		
(GA	Materia Thickne) (in)		_	isma O ₂ led)	O ₂	ield N ₂ ed)	0 ₂	flow N ₂ ed)	Arc Voltage (volts)	Tor Stand (in)	-		ravel peed (m/min)	Pier		-	rce lay (sec)
24	0.024	0.6	_	46	15	5	5	75	117	0.030	0.8	200	5.08	0.060	1.5	0	0.05
22	0.030	0.8	—	46	15	5	5	75	121	0.030	0.8	170	4.32	0.060	1.5	0	0.05
20	0.036	0.9	—	46	15	5	5	75	125	0.040	1.0	140	3.56	0.080	2.0	0	0.05
18	0.048	1.3	—	46	15	5	5	75	128	0.040	1.0	110	2.80	0.080	2.0	0	0.05
16	0.060	1.5	—	46	15	5	5	75	128	0.040	1.0	80	2.03	0.080	2.0	0	0.05
14	0.075	1.9	—	46	15	5	5	75	128	0.040	1.0	60	1.52	0.080	2.0	0.5	0.16
12	0.105	2.7	—	46	15	5	5	75	135	0.060	1.5	50	1.27	0.100	2.5	1	0.27
10	0.135	3.4	—	46	15	5	5	75	135	0.060	1.5	35	0.90	0.100	2.5	1.5	0.37
	3⁄16	4.8	—	46	15	5	5	75	135	0.060	1.5	32	0.81	0.100	2.5	2	0.50
	1/4	6.4	—	46	30	10	5	75	136	0.040	1.0	25	0.64	0.100	2.5	2.5	0.60

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).

** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

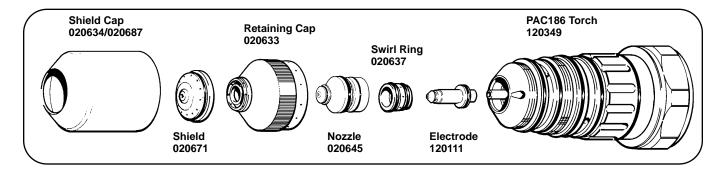
Mild Steel

O₂ Plasma / O₂ & N₂ Shield

15 Amp Cutting

				Test Flowra	Cut tes (%))		reflow* ites (%)	Arc	Тог	ch			Ini	tial		
(GA	Materia Thicknes) (in)	-	_	sma O ₂ ed)	0 ₂	ield N ₂ ed)	0 ₂	flow N ₂ ed)	Voltage *** (volts)	Stan		-	ravel peed (m/min)	Pier	cing ight (mm)	De	rce lay (sec)
20	0.036	0.9	—	40	30	10	5	75	120	0.020	0.5	100	2.54	0.040	1.0	0	0.1
18	0.048	1.3	—	40	30	10	5	75	121	0.020	0.5	85	2.16	0.040	1.0	0	0.1
16	0.060	1.5	—	40	30	10	5	75	124	0.030	0.8	65	1.65	0.040	1.0	.5	0.2
14	0.075	1.9		40	30	10	5	75	130	0.040	1.0	45	1.14	0.060	1.5	1	0.3
12	0.150	2.7		40	30	10	5	75	132	0.040	1.0	35	0.90	0.060	1.5	1.5	0.4
10	0.135	3.4	—	40	30	10	5	75	134	0.040	1.0	25	0.64	0.060	1.5	2	0.50

O2 and N2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- * Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.
- *** To maintain the 0.020 inch (0.5 mm) torch standoff as the electrode wears, the arc voltage may have to be increased to avoid having the torch dive into the plate.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Mild Steel

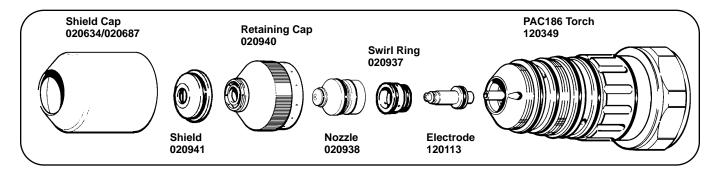
O₂ Plasma / O₂ & N₂ Shield

30 Amp Cutting

				Test Flowra				reflow* ites (%)						Ini	tial		
(GA	Materia Thickne) (in)		—	sma O ₂ ed)	O ₂	eld N ₂ ed)	0 ₂	flow N ₂ ed)	Arc Voltage (volts)	Tor Stand (in)			ravel peed (m/min)	Pier	cing ght (mm)	-	rce lay (sec)
24	0.024	0.6	_	46	15	5	5	75	103	0.030	0.8	200	5.08	0.040	1.0	0	0
22	0.030	0.8	—	46	15	5	5	75	108	0.030	0.8	170	4.32	0.040	1.0	0	0
20	0.036	0.9	—	46	15	5	5	75	110	0.040	1.0	140	3.56	0.060	1.5	0	0
18	0.048	1.3	—	46	15	5	5	75	112	0.040	1.0	110	2.80	0.060	1.5	0	0
16	0.060	1.5	—	46	15	5	5	75	115	0.040	1.0	80	2.03	0.060	1.5	0	0.1
14	0.075	1.9	—	46	15	5	5	75	118	0.040	1.0	60	1.52	0.060	1.5	0	0.1
12	0.105	2.7	—	46	15	5	5	75	121	0.060	1.5	50	1.27	0.080	2.0	.5	0.2
10	0.135	3.4	—	46	15	5	5	75	124	0.060	1.5	35	0.90	0.080	2.0	1	0.3
	3⁄16	4.8	—	46	15	5	5	75	125	0.060	1.5	32	0.81	0.080	2.0	1.5	0.4
	1/4	6.4	—	46	30	10	5	75	124	0.040	1.0	25	0.64	0.080	2.0	2	0.5

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).


** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

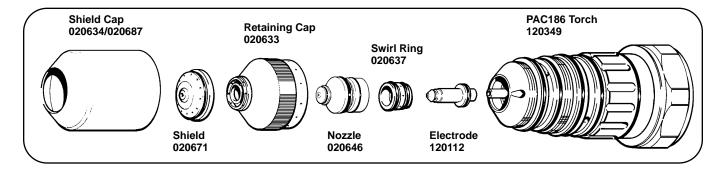
Stainless Steel#

Air Plasma / Air Shield

30 Amp Cutting

				Test Flowra	Cut tes (%)			Preflow* ates (%)	Arc	Тог	ch			Ini	tial		
(GA	Materia Thicknes) (in)		_	sma Air nite)	Shi Air (Wh	_	Air	eflow — hite)	Voltage *** (volts)	Stan		-	ravel peed (m/min)	Pier	cing ght		erce lay (sec)
27	0.016	0.4	_	60	30	0	75	0	70-75	0.020	0.5	250	6.35	0.040	1.0	0	0
24	0.024	0.6	—	60	30	0	75	0	70-75	0.020	0.5	220	5.59	0.040	1.0	0	0
22	0.030	0.8	—	60	30	0	75	0	70-75	0.020	0.5	200	5.08	0.040	1.0	0	0.1
20	0.036	0.9	—	60	30	0	75	0	70-75	0.020	0.5	180	4.57	0.040	1.0	0	0.1
18	0.048	1.3	—	60	30	0	75	0	73-78	0.020	0.5	150	3.81	0.060	1.5	.5	0.2
16	0.060	1.5	—	60	30	0	75	0	73-78	0.020	0.5	120	3.05	0.060	1.5	.5	0.2

Air inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- # Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.
- *** To maintain the 0.020 inch (0.5 mm) torch standoff as the electrode wears, the arc voltage may have to be increased to avoid having the torch dive into the plate.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

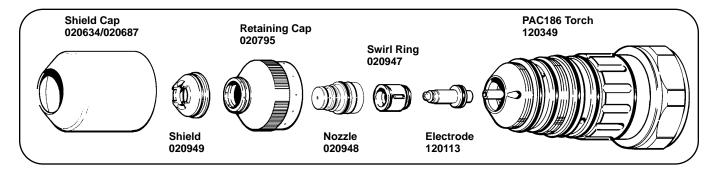
Mild Steel

O₂ Plasma / O₂ & N₂ Shield

50 Amp Cutting

				Test Flowra	Cut tes (%)			reflow* tes (%)						Ini	tial		
(GA	Materia Thickne (in)		_	sma O ₂ ed)	Shi O ₂ (Re	N_2	0 ₂	flow N ₂ ed)	Arc Voltage (volts)	Tor Stand (in)			Travel Speed (m/min)	Pier Hei (in)	cing ght	-	rce lay (sec)
22	0.030	0.8	_	40	40	0	5	75	103	0.040	1.0	270	6.86	0.060	1.5	0	0
20	0.036	0.9	—	40	40	0	5	75	103	0.040	1.0	210	5.33	0.060	1.5	0	0
18	0.048	1.3	—	40	40	0	5	75	104	0.040	1.0	160	4.06	0.060	1.5	0	0
16	0.060	1.5	—	40	40	0	5	75	109	0.050	1.3	120	3.05	0.080	2.0	0	0
14	0.075	1.9	—	40	40	0	5	75	113	0.050	1.3	100	2.54	0.080	2.0	0	0
12	0.105	2.7	—	40	40	0	5	75	119	0.050	1.3	75	1.91	0.100	2.5	0	0.1
10	0.135	3.4	—	40	40	0	5	75	122	0.060	1.5	55	1.40	0.100	2.5	.5	0.2
	3⁄16	4.8	—	40	40	0	5	75	124	0.060	1.5	45	1.14	0.100	2.5	1	0.3
	1/4	6.4	—	60	60	0	5	75	127	0.080	2.0	35	0.90	0.120	3.0	2	0.5

 O_2 and N_2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- * Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

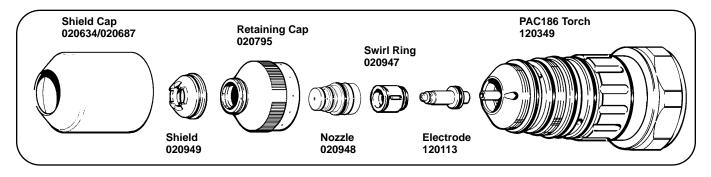
Stainless Steel#

Air Plasma / Air Shield

50 Amp Cutting

				Test Flowra	Cut tes (%)			reflow* tes (%)						Init Pier			
	Material Thickness (GA) (in) (mm)		_	sma Air	Shi Air	_	Pret Air	_	Arc Voltage	Tor Stand	loff**	S	ravel peed	Hei **	ght **	De	erce lay
(GA	.) (in)	(mm)	(WI	hite)	(Wh	ite)	(Wr	nite)	(volts)	(in)	(mm)	(ipm)	(m/min)	(in)	(mm)	(dial)	(sec)
14	0.075	1.9	0	40	80	0	60	0	100	0.040	1.0	120	3.05	0.120	3.0	1	0.3
12	0.105	2.7	0	40	80	0	60	0	100	0.040	1.0	80	2.03	0.120	3.0	1.5	0.4
10	0.135	3.4	0	40	60	0	60	0	110	0.060	1.5	55	1.40	0.120	3.0	1.5	0.4
	3⁄16	4.8	0	40	50	0	60	0	115	0.080	2.0	40	1.02	0.160	4.0	2	0.5

Air inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- # Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.
- *** Measured from tips of shield adapter 020949.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Copper#

O₂ Plasma / O₂ & N₂ Shield

50 Amp Cutting

				Test Flowra				reflow* ates (%)						Init Pier			
	Materia Thickne		Plas —	sma O ₂	Shi O ₂	eld N ₂	Pre O ₂	flow N ₂	Arc Voltage	Tor Stand			ravel peed	Hei	ght		rce lay
(GA	.) (in)	(mm)	(Re	ed)	(Re	ed)	(R	ed)	(volts)	(in)	(mm)	(ipm)	(m/min)	(in)	(mm)	(dial)	(sec)
16	0.060	1.5	_	40	20	10	35	40	92	0.080	2.0	70	1.78	0.100	2.5	4	1.0
14	0.075	1.9	—	40	20	10	35	40	92	0.080	2.0	70	1.78	0.100	2.5	4	1.0
12	0.105	2.7	—	40	20	10	35	40	94	0.080	2.0	65	1.65	0.100	2.5	7	1.5
10	0.135	3.4	—	40	20	10	35	40	94	0.080	2.0	65	1.65	0.100	2.5	9	2.0

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

- # Copper plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.
- *** Measured from tips of shield adapter 020949.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Mild Steel

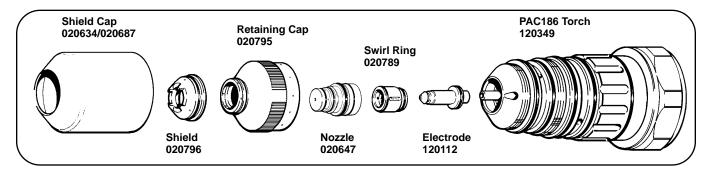
O₂ Plasma / O₂ & N₂ Shield

70 Amp Cutting

				Test Flowrat)	Test Preflow* Flowrates (%)								tial cing		
	Material Thickness (GA) (in) (mm)		Plasma — O ₂ (Red)		Shield O ₂ N ₂ (Red)		Preflow O ₂ N ₂ (Red)		Arc Voltage (volts)		rch doff** (mm)		Fravel Speed (m/min)	Hei	ight ** (mm)	-	erce lay (sec)
16	0.060	1.5	_	25	0	100	5	75	107	0.060	1.5	280	7.11	0.100	2.5	0	0.1
14	0.075	1.9	—	25	0	100	5	75	107	0.060	1.5	230	5.84	0.100	2.5	0	0.1
12	0.105	2.7	—	25	0	100	5	75	109	0.080	2.0	185	4.70	0.120	3.0	0	0.1
10	0.135	3.4	—	25	0	100	5	75	114	0.080	2.0	150	3.81	0.120	3.0	.5	0.2
	3⁄16	4.8	—	25	0	100	5	75	119	0.080	2.0	120	3.05	0.120	3.0	1	0.3
	1/4	6.4	—	40	0	100	5	75	129	0.080	2.0	100	2.54	0.120	3.0	2	0.5
	3⁄8 9.5		—	40	0	100	5	75	135	0.100	2.5	65	1.65	0.160	4.0	4	1.0

O2 and N2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

- * Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.


*** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

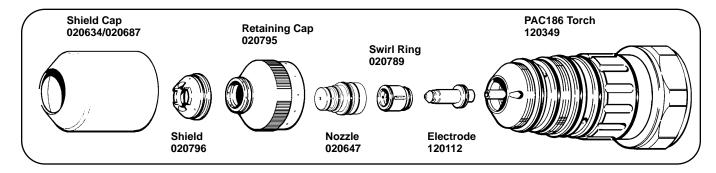
Stainless Steel#

Air Plasma / Air & CH₄ Shield

70 Amp Cutting

					t Cut ites (%)			reflow* ates (%)						Init Pier	tial cing		
	Materia Thickne		Plasma — Air		Shield Air CH₄		Preflow Air —		Arc Voltage	Torch e Standoff**		Travel Speed		Height		Pierce Delav	
(GA	(GA) (in) (mm)		(White)			(White)		(White)		(in)	(mm)	(ipm)	(m/min)	(in)	(mm)	-	(sec)
10	0.135	3.4	_	35	100	0	75	0	134	0.060	1.5	100	2.54	0.140	3.5	1	0.3
	3/16	4.8	—	35	60	3	75	0	139	0.080	2.0	80	2.00	0.140	3.5	1.5	0.4
	1/4	6.4	—	35	30	10	75	0	149	0.140	3.5	55	1.40	0.180	4.5	2	0.5
	3/8	9.5	—	35	30	10	75	0	164	0.140	3.5	30	0.76	0.200	5.0	2	0.5
	1/2	12.7	—	50	40	20	75	0	189	0.250	6.3	25	0.64	***	**	**	**

Air and CH₄ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- # Stainless steel plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.
- *** Measured from tips of shield adapter 020796.
- **** Piercing 1/2 inch (12.7 mm) stainless steel is not recommended, it will shorten consumable life. Starting cuts at the edge of the metal is recommended.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Aluminum#

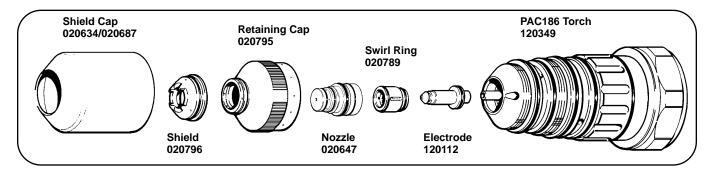
Air Plasma / CH₄ Shield

70 Amp Cutting

				Test Flowra				Preflow* ates (%)							tial cing		
	Material Thickness (GA) (in) (mm)		Plasma — Air (White)		Shield Air CH <u>/</u> (White)		Preflow Air — (White)		Arc Voltage (volts)	Tor Stand (in)	rch doff** (mm)		Fravel Speed (m/min)	Hei	ght ** (mm)	-	erce lay (sec)
18	0.048	1.2	_	45	0	40	75	0	159	0.100	2.5	150	3.81	0.160	4.0	0	0.1
16	0.060	1.5	—	45	0	40	75	0	159	0.100	2.5	125	3.18	0.160	4.0	0	0.1
14	0.075	1.9	—	45	0	40	75	0	159	0.100	2.5	100	2.54	0.160	4.0	0	0.1
12	0.105	2.7	—	45	0	40	75	0	159	0.100	2.5	85	2.16	0.160	4.0	.5	0.2
	1⁄8	3.2	—	45	0	40	75	0	179	0.180	4.5	70	1.78	0.200	5.0	.5	0.2
10	0.135	3.4	—	45	0	40	75	0	179	0.180	4.5	65	1.65	0.200	5.0	.5	0.2
	1/4	6.4	—	45	0	40	75	0	179	0.180	4.5	45	1.14	0.200	5.0	1	0.3
	3⁄8	9.5	—	45	0	40	75	0	179	0.180	4.5	30	0.76	0.200	5.0	1	0.3

Air and CH₄ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

- # Aluminum plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow Air flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.


*** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

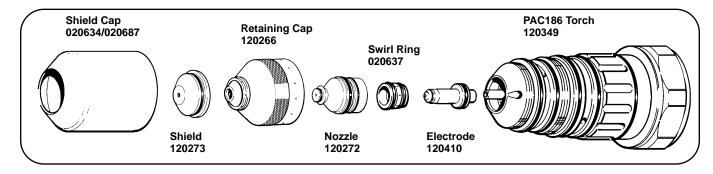
Copper#

O₂ Plasma / O₂ & N₂ Shield

70 Amp Cutting

				Test Flowra	Cut tes (%))		reflow* ites (%)						lni [.] Pier	tial cing		
	Material Thickness (GA) (in) (mm)		Plasma — O ₂ (Red)		Shield O ₂ N ₂ (Red)		Preflow O ₂ N ₂ (Red)		Arc Voltage (volts)	Tor Stand (in)		-	ravel peed (m/min)		ght	-	rce lay (sec)
10	0.135	3.4	_	50	75	50	5	75	133	0.120	3.0	60	1.52	0.160	4.0	9	2.0
	3/16	4.8	—	50	75	50	5	75	119	0.120	3.0	55	1.40	0.160	4.0	—	2.5
	1/4	6.4		50	75	50	5	75	123	0.120	3.0	55	1.40	0.160	4.0	—	3.0
	3/8	9.5	—	50	75	50	5	75	129	0.120	3.0	25	0.64	0.160	4.0	—	5.0

O₂ and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.


- # Copper plate sometimes comes with a protective plastic film. Remove film prior to cutting.
- * Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).
- ** Torch standoff tolerances are ± 0.005 inch (± 0.125 mm). When using a THC, tolerances are ± 1 volt.
- *** Measured from tips of shield adapter 020796.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Mild Steel

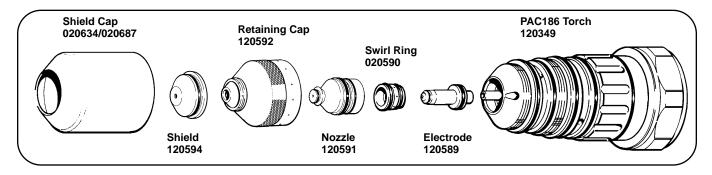
O₂ Plasma / O₂ & N₂ Shield

100 Amp Cutting

			Test Flowra	Cut tes (%))		Preflow* ates (%)						Ini	tial		
Material Thickness (GA) (in) (mm)		Plasma — O ₂ (Red)		Shield O ₂ N ₂ (Red)		Preflow O ₂ N ₂ (Red)		Arc Voltage (volts)	Tor Stand (in)		-	ravel peed (m/min)	Pier Hei (in)	cing	-	erce lay (sec)
1/8	3.2	_	60	35	90	10	100	137	0.125	3.2	275	7.0	0.180	4.6	0	0.00
1/4	6.4	—	60	35	90	10	100	141	0.125	3.2	135	3.43	0.300	7.6	0.4	0.22
3/8	9.5	—	60	35	90	10	100	145	0.125	3.2	95	2.41	0.300	7.6	0.7	0.27
1/2 12.7		—	60	35	90	10	100	147	0.125	3.2	64	1.62	0.300	7.7	1.0	0.37

O2 and N2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

* Slightly increasing the test preflow O₂ and N₂ flowrates may increase piercing capability on the thicker materials listed above. However, increasing the preflow flowrates too much may affect plasma starting reliability (misfiring).


** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Stainless Steel

H35 & N₂ Plasma / N₂ Shield

100 Amp Cutting

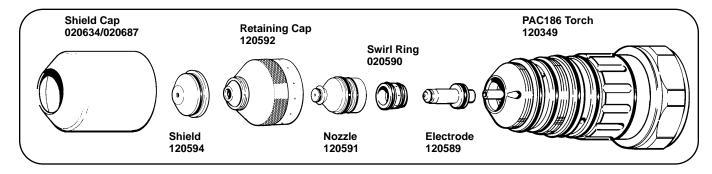
				Test Flowrat		I	Test Preflow Flowrates (%)							Ini	tial		
Material Thickness (GA) (in) (mm)		Plasma H35 N ₂ (Blue)		Shield N ₂ N ₂ (Blue)		Preflow N ₂ N ₂ (Blue)		Arc Voltage (volts)		Torch Standoff** (in) (mm)		Travel Speed (ipm) (m/min)		cing ght	Pie De (dial)	rce lay (sec)	
1.	/4	6.4	30	30	60	60	45	45	134	0.120	3.0	75	1.9	0.200	5.1	0	0.1
3	/8	9.5	30	30	60	60	45	45	144	0.150	3.8	65	1.6	0.200	5.1	0.5	0.2
1.	/2	12.7	40	50	60	60	45	45	160	0.250	6.4	45	1.1	0.300	7.6	1	0.3

H35 and N₂ gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

H35 gas purity must be 99.995 % minimum.

H35 flowrate must be 85 scfh (2407 l/hr) at fullscale.

** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.


If the part is not completely cut away from the scrap, try modifying the leadout. Stop the cut 0.050 inch (1.3 mm) before the end of the part for 1/4 and 3/8 inch (6.4 and 9.5 mm) material and 0.100 inch (2.5 mm) for 1/2 inch (12.7 mm) material. The ramp down of the current and gases will complete the cut. If your program can not be modified, reduce cutting speed and use no leadout.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.

Aluminum

H35 & N₂ Plasma / N₂ Shield

100 Amp Cutting

		Test Flowrat		I	Test Preflow Flowrates (%)							Ini	tial			
Material Thickness (GA) (in) (mm)		H35	asma Shiel N ₂ N ₂ Blue) (Blue		N_2	Preflow N ₂ N ₂ (Blue)		Arc Voltage (volts)	Torch Standoff** (in) (mm)		Travel Speed (ipm) (m/min)		Piercing Height (in) (mm)		De	rce lay (sec)
1/4	6.4	30	30	60	60	45	45	145	0.157	4.0	100	2.5	0.236	6.0	0	0.1
3/8	9.5	30	30	60	60	45	45	149	0.157	4.0	70	1.8	0.236	6.0	0.5	0.2
1/2	12.7	30	30	60	60	45	45	155	0.157	4.0	40	1.1	0.236	6.0	1	0.3

H35 and N_2 gas inlet pressures must be between 105 - 135 psi (7.2 - 9.2 bar) for all material thickness.

H35 flowrate must be 85 scfh (2407 l/hr) at fullscale.

** Torch standoff tolerances are \pm 0.005 inch (\pm 0.125 mm). When using a THC, tolerances are \pm 1 volt.

Counter clockwise (CCW) consumables are available for mirror image cutting. Refer to Instruction Manual, Section 6, Parts List.