DISCLAIMER The information in this document is subject to change without notice and should not be construed as a commitment by Hypertherm Automation®. Hypertherm Automation® assumes no responsibility for any errors that appear.

TRADEMARKS Hypertherm Automation is a wholly owned subsidiary of Hypertherm®, Inc. Sensor™ is a trademark of Hypertherm Automation. HyDefinition® Plasma is a reg. trademark of Hypertherm®, Inc. HyPerformance™ Plasma is a trademark of Hypertherm Automation. Other trademarks are properties of their respective owners.

COPYRIGHT 2008 by Hypertherm Automation. All rights Reserved

Printed in USA
Table of Contents

Making people and machines more productive through process Automation ... 1

SAFETY .. 1

SECTION 1: OVERVIEW ... 9

PHC Control Module ... 9
Plasma Interface Assembly ... 9
Lifter Assembly ... 9
Sensor PHC Models ... 9
Features .. 10
 Features .. 10
 Options .. 10
System Specifications* .. 11
Connections ... 12
 PHC to CNC Signals ... 13
 PHC to Plasma Signals ... 13
 PHC to Lifter Signals .. 13
Sensor™ PHC Front Panel Indicators 14
Sensor™ PHC Front Panel Controls 14
Control Module .. 15
Plasma Interface Assembly ... 16
Standard Lifter Assembly .. 17

SECTION 2: INSTALLATION AND SETUP .. 19

Standard components ... 19
Optional components .. 19
Claims .. 19
 Claims for damage during shipment 19
 Claims for defective or missing merchandise 19
Power Requirements .. 20
Control Unit Mounting .. 21
 Control Unit Mounting from Rear 21
 Control Unit Mounting from Front 22
Plasma Interface Assembly Mounting 23
Lifter Assembly Mounting .. 24
Torch Breakaway Assembly ... 25
Torch Mounting Block Kit ... 26
System Cables .. 27
Grounding Requirements .. 28
PhC Interface Signals ... 29
CNC Interface Signals .. 30
CNC Signal Descriptions .. 30
 Cycle Start ... 30
 Auto Disable / Corner Hold .. 30
 IHS Sync .. 31
 IHS Complete .. 31
 Motion .. 31
 Retract Complete ... 31
 Error .. 31
 Interlock .. 31
 Plasma Interface Signals .. 33
<table>
<thead>
<tr>
<th>Table of Figures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1: Connections</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2: Control Module</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3: Plasma Interface (Cover Removed)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 4: Lifter Assembly</td>
<td>17</td>
</tr>
<tr>
<td>Figure 5: Power Connection and Fuse</td>
<td>20</td>
</tr>
<tr>
<td>Figure 6: Control Unit Rear Mounting</td>
<td>21</td>
</tr>
<tr>
<td>Figure 7: Control Unit Front Mounting</td>
<td>22</td>
</tr>
<tr>
<td>Figure 8: Plasma Interface Mounting</td>
<td>23</td>
</tr>
<tr>
<td>Figure 9: Lifter Mounting</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10: Torch Breakaway</td>
<td>25</td>
</tr>
<tr>
<td>Figure 11: Torch Mounting Clamp</td>
<td>26</td>
</tr>
<tr>
<td>Figure 12: System Cables</td>
<td>27</td>
</tr>
<tr>
<td>Figure 13: System Grounding</td>
<td>28</td>
</tr>
<tr>
<td>Figure 14: General Interfacing Examples</td>
<td>29</td>
</tr>
<tr>
<td>Figure 15: Basic CNC Interface</td>
<td>32</td>
</tr>
<tr>
<td>Figure 16: Powermax Connections using Plasma Interface Unit</td>
<td>34</td>
</tr>
<tr>
<td>Figure 17: Plasma Interface</td>
<td>35</td>
</tr>
<tr>
<td>Figure 18: Plasma Interface Connections</td>
<td>36</td>
</tr>
<tr>
<td>Figure 19: Interfacing to Older Plasma Systems (MAX100 or MAX200)</td>
<td>37</td>
</tr>
<tr>
<td>Figure 20: Setup DIP Switches</td>
<td>40</td>
</tr>
<tr>
<td>Figure 21: Error Indications</td>
<td>49</td>
</tr>
</tbody>
</table>
Safety

Read this Manual
Read and understand this manual, the cutting machine manuals, and your employer’s safety practices.

Note: This product is not designed to be field serviceable. Return this product to an authorized repair center for service.

Sensor PHC Safety Listing

Note: This product has been designed and manufactured in accordance with CE and UL Safety Standards.

UL has successfully tested and listed this product in accordance with the applicable U.S. and Canadian Safety Standards. File number E307226.

Additional markings:
1) Use minimum 75°C copper wire only.
2) Use copper conductors only.
3) Suitable for use on a circuit capable of delivering not more than 5000rms symmetrical amperes, 230 volts maximum.
4) Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection provided by integral LISTED branch circuit protection fuse.
5) “Solid state motor overload protection is provided at 145% of full load current”, or the equivalent.
Section 1: Overview

Hypertherm’s Sensor™ PHC (228214) is a plasma torch height control/initial height sensing (THC/IHS) system designed for conventional plasma cutting applications on an X-Y cutting table. The system uses the plasma arc voltage to control the physical stand-off (distance) between the torch and work piece during plasma arc cutting. Initial Height Sense (IHS) is accomplished by ohmic contact sensing or by a limited force stall detection method. The Sensor™ PHC has been optimized for conventional plasma at or below 200 amps.

Note: Sensor™ PHC is not recommended for HyDefinition® or HyPerformance™ cutting or for higher power applications. The system is not recommended for use on a water table.

A complete Sensor™ PHC system includes the following components:

PHC Control Module

The PHC control module (228116) houses a microcontroller, an operator control panel, and a Lifter motor drive. This unit provides initial height sensing, arc voltage control. The PHC control module interfaces with the torch lifter, the CNC machine, and the plasma power supply through standard discrete I/O interfaces. The operator interface includes an LED display for set and actual arc voltage as well as error codes. The control unit main functions are: arc voltage control/manual position mode, end of cut retract, IHS test, pierce height, voltage controlled cut height, pierce delay; and access to setup and calibration adjustments. See Figure 2 on page 15.

Plasma Interface Assembly

The plasma interface (228256) provides a clean, standardized connection between the PHC control module and the plasma power supply. The assembly can be mounted either to the back of or inside the plasma power supply. The voltage divider provides a filtered low voltage signal which is derived from the cutting arc voltage. The interface also provides an enclosed terminal block for easy connection to the interface signals. See Figure 3 on page 16.

Lifter Assembly

The torch lifter station (228117) positions a torch head vertically above the work piece and is controlled by the PHC control module. Its maximum standard stroke is 6 inches (152 mm) between home and the lower limit. It is driven by a DC motor attached to a lead screw. The control module interfaces with an optional lower limit switch to detect maximum travel downward. The control also interfaces with an optional home switch to detect when the lifter is in the highest position. The standard lifter does not use limit switches but has been designed to allow for hard stop limit detection. A power-off brake disables power off motion of the torch. A torch breakaway is an integral part of the lifter and provides a level of protection for the torch, lifter and X-Y table. Upon impact, the breakaway releases from the locked position and allows the torch to float. A breakaway switch detects when this protection has tripped and signals both the PHC control and the CNC machine. See Figure 4 on page 17.

Sensor PHC Models

<table>
<thead>
<tr>
<th>Kit Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>228214</td>
<td>Sensor PHC with control module, lifter, and 50-foot cables</td>
</tr>
<tr>
<td>228123</td>
<td>Sensor PHC (with 123896) for Powermax bundle</td>
</tr>
<tr>
<td>228242</td>
<td>Sensor PHC without lifter station</td>
</tr>
<tr>
<td>228243</td>
<td>Sensor PHC without lifter or 123895</td>
</tr>
<tr>
<td>228244</td>
<td>Sensor PHC without control module</td>
</tr>
<tr>
<td>228245</td>
<td>Sensor HPC without plasma interface</td>
</tr>
</tbody>
</table>
Features

Sensor™ PHC Plasma Height Control is an automated height control system for plasma shape cutting applications. This product uses microprocessor technology to automatically detect the plate and adjust torch position to an arc voltage set point during plasma cutting operations. This reduces operator input, improves accuracy and increases productivity. The design of the Sensor™ PHC has been optimized for lower power conventional plasma operation.

Features
- Sensor™ PHC can be used with any CNC
- Easy setup & operation
- Both manual & automatic operation modes
- Microprocessor control for increased sensitivity and control
- High positioning speeds possible with up to 6 amps continuous current and linear adjustment over full range
- Built-in torch breakaway protection
- Built-in diagnostic and fault detection features
- Auto retract on plate contact
- 7 Segment LED display for set/actual arc voltage & error displays
- Power on indicator
- Upper and lower limit indicators
- In Position Indicator
- Attention / error indicator
- Torch position hold indicator
- Plate contact indicator

Options
- Interface cables
- Torch mounting clamps -1 3/8", 1 3/4" and 2" diameters available.
System Specifications*

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatible motors:</td>
<td>DC PM 24Vdc, 2 Amps to 6 Amps</td>
</tr>
<tr>
<td>Max power output:</td>
<td>150W</td>
</tr>
<tr>
<td>Standard lifter range:</td>
<td>Linear 6” (152mm)</td>
</tr>
<tr>
<td>Motor output:</td>
<td>Full “H” bridge PWM with current & voltage sensing</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>0.01” (.25mm) or 0.5 Volt **</td>
</tr>
<tr>
<td>Voltage control range:</td>
<td>50 Vdc to 210 Vdc</td>
</tr>
<tr>
<td>IHS range:</td>
<td>0.05 inches (1.2 mm) to 0.5 inches (12 mm) **</td>
</tr>
<tr>
<td>Operator controls:</td>
<td>Arc voltage, IHS height, & pierce delay control knobs</td>
</tr>
<tr>
<td>Operator switches:</td>
<td>IHS test, auto / manual, & manual up / down</td>
</tr>
<tr>
<td>Operator display:</td>
<td>3 digit 7 segment display for set volts, actual volts, & error</td>
</tr>
<tr>
<td>Calibration adjustments:</td>
<td>Arc voltage, stall force, auto kerf detect level</td>
</tr>
<tr>
<td>Setup DIP switches:</td>
<td>Max motor current, arc voltage response, IHS speed, auto delay, int/ext pierce delay delay, end of cut retract height, auto kerf detect, preflow during IHS, limit switches, breakaway switch, arc voltage calibration</td>
</tr>
<tr>
<td>Measuring technology:</td>
<td>Arc voltage feedback & ohmic contact sensing</td>
</tr>
<tr>
<td>Interface inputs/ outputs:</td>
<td>8 outputs and 6 inputs optically isolated on “D” connectors</td>
</tr>
<tr>
<td>Control dimensions:</td>
<td>6.2”(157mm)W x 4.3”(1.9mm)D x 10.4”(264mm)H</td>
</tr>
<tr>
<td>Control weight:</td>
<td>9 lbs</td>
</tr>
<tr>
<td>Control power:</td>
<td>115VAC 0r 230VAC +/- 10% 50/60 Hz –selectable</td>
</tr>
<tr>
<td>Standard lifter dimensions:</td>
<td>6”(152mm)W x 3.15”(80mm)D x 21.5”(546mm) **</td>
</tr>
<tr>
<td>Standard lifter weight:</td>
<td>19 lbs **</td>
</tr>
<tr>
<td>Operating environment:</td>
<td>0 to 50C; 95% relative humidity (non-condensing)</td>
</tr>
</tbody>
</table>

*Information subject to change without notice.
**With Standard supplied lifter mechanics
Connections
All connections to the Sensor™ PHC are made through four connectors on the bottom of the control unit. See Figure 1.

WARNING! For safety and proper operation this unit must be connected to the star ground on the work table.
PHC to CNC Signals
All signals to the CNC are connected through the 25-pin D subconnector on the control unit. For detailed interfacing information, see PHC Interface Signals on page 29 and CNC Interface Signals on page 30.

Outputs to CNC:
- Digital IHS complete output
- Digital motion output
- Digital retract complete output
- Digital error output/torch collision

Inputs from CNC:
- Digital cycle start input
- Digital corner hold input
- Digital IHS sync input
- Interlock

PHC to Plasma Signals
All signals to the plasma interface are connected through the 15-pin D subconnector on the control unit. These signals are easily connected through the plasma interface unit or directly to a Powermax® G3 supply using a G3 interface cable. For more detailed information, see Plasma Interface Assembly on page 16.

Outputs to plasma:
- Digital plasma start output
- Digital hold ignition output

Inputs from plasma:
- Digital transfer input
 - Analog attenuated arc voltage

PHC to Lifter Signals
All signals to the lifter are connected through the 9-pin D subconnector on the control unit. For more detailed information, see Standard Lifter Assembly on page 17.

Inputs from lifter:
- Digital upper limit switch
- Digital lower limit switch
- Digital breakaway switch
 - Analog tip touch sense

PHC to Lifter Power Connections
All power connections to the lifter are coupled through the 7-pin circular connector on the control unit. For more detailed information, see Standard Lifter Assembly on page 17.

Outputs to Lifter:
- Motor drive 24V PWM
- Power off brake 24Vdc
Sensor™ PHC Front Panel Indicators

- Green: Power
- Yellow: Upper Limit
- Green: In Position
- Yellow: Lower Limit
- Red: Attention / Error Code
- Yellow: Corner / Kerf Hold
- Red: Plate Contact
- Red 3 digit: Set / Actual Arc Voltage – Error Number – Set Pierce Height & Delay

Sensor™ PHC Front Panel Controls

- Multiturn Rotary Pot: Set Arc Voltage
- Rotary Pot: Pierce Height Retract
- Rotary Pot: Pierce Delay Time
- Momentary Toggle Switch: IHS Test
- Toggle Switch: Auto / Manual
- Momentary 3 pos Toggle: Manual Up / Down
Control Module

Electrical
Input power (switch selected dual range).......................... 115 VAC or 230 VAC, 1 Phase, 50/60 Hz
Parallel digital I/O ... +12 Vdc
Motor drive output voltage ... 24 Vdc
Motor drive output current ... 2, 3, 4, 6 Amps max DIP switch selectable
Motor brake output ... +24 Vdc ½ Amp

The features of the control module are highlighted in Figure 2.

Figure 2: Control Module
Plasma Interface Assembly

The plasma interface module is shown in Figure 3.

Electrical
Parallel digital I/O..+12 Vdc to +24 Vdc
Interface signals... Plasma start, hold ignition, transfer
Voltage divider function... Arc voltage (attenuated and filtered)

Figure 3: Plasma Interface (Cover Removed)

If you are using a Sensor PHC 228245 with an HSD 130, select plasma interface assembly 228247 (25-foot cable) or 228248 (50-foot cable). Refer to Field Service Bulletin 805740 for installation information.
Standard Lifter Assembly

Electrical
Motor ...+ 24 Vdc, 3 Amps
Motor brake ...+ 24 Vdc ½ Amp
Limit switches ..not used – hard stop limit detection
Breakaway switch ..+ 12 Vdc proximity

Lifter Control Function
Motordrive ..DC full bridge, PWM chopped current source
Lifter speed feedback ..Motor voltage
Maximum lifter speed ..200 inches (508 cm) per minute
Maximum lifter stroke6- inches (152 mm)
Maximum lifter load ...10 pounds

Figure 4: Lifter Assembly
Section 2: Installation and Setup

The standard PHC system includes the following components:

Standard components

PHC Control Module
Power cord - 6.5 ft. (2 m)
Lifter assembly with torch breakaway
Plasma interface assembly
Interface cables
 • Lifter motor drive cable
 • Lifter interface cable
 • Plasma interface cable
 • Ohmic contact wire
 • CNC interface cable
Sensor™ PHC system instruction manual

In addition, the following optional components can be ordered:

Optional components

Interface cables
Torch mounting clamps - 1 3/8", 1 3/4" and 2" diameters available.

Claims

Claims for damage during shipment
If your unit is damaged during shipment, you must file a claim with the carrier. Hypertherm will furnish you with a copy of the bill of lading upon request. If you need additional assistance, please contact your Hypertherm Customer Service agent.

Claims for defective or missing merchandise
If any of the merchandise is defective or missing, call your authorized Hypertherm distributor. If you need additional assistance, please contact your Hypertherm Customer Service agent.
Power Requirements

The PHC can be connected to either 115 Vac or 230 Vac 50/60 Hz. Depending on the input voltage, Slow Blow fuses of the correct size should be installed. For 115 Vac, install a 2 Amp fuse and for 230 Vac, a 1 Amp fuse should be used. The power input voltage is selected by installing the fuse block into the power input module so that the correct voltage is displayed through the power input module window. See Figure 5 for input voltage selection.

If the line cord plug is removed and the unit is directly wired then the connections should be made as follows.

- Blue wire AC neutral
- Brown wire AC hot
- Green wire ground-chassis

![Figure 5: Power Connection and Fuse](image)

WARNING!
Configure for the correct input voltage. 115V or 230V should be displayed in the window.
Control Unit Mounting

Before interconnecting the PHC system, mount the units as required, using customer-supplied hardware. Do not allow the units to lie unsecured on top of cabinets or on the floor. The control units can be mounted from either the rear or the front as shown in Figure 6 and Figure 7.

Control Unit Mounting from Rear
Mount the PHC control unit close to the machine operator console for easy access to the operator panel. The unit should be mounted to provide easy access and visibility to the PHC controls and display. There are four mounting holes for #10-32 inch or M4 mm fasteners.

![NOTE: For reliable operation the ground must be connected.](image)

Figure 6: Control Unit Rear Mounting
Control Unit Mounting from Front
Mount the PHC control unit close to the machine operator console for easy access to the operator panel. The unit should be mounted to provide easy access and visibility to the PHC controls and display. There are six mounting holes available. See Figure 7

![Figure 7: Control Unit Front Mounting]

NOTE: For reliable operation the ground must be connected.
Plasma Interface Assembly Mounting

Mount the plasma interface assembly close to the plasma power supply for easy connection of arc voltage and signal wires between the units. The unit can be mounted in any position and can be mounted directly to the back or inside of the power supply. The mounting holes are sized for #6 or M3 fasteners. See Figure 8.

⚠️ NOTE: The plasma interface ground terminals must be connected to the plasma power supply positive ground to provide measurement feedback for arc voltage. This feedback is essential for optimal cutting performance.

Figure 8: Plasma Interface Mounting
Lifter Assembly Mounting

Mount the lifter assembly on the cutting table to take maximum advantage of the vertical travel range. Typically the bottom of the lifter should be between 6 and 8 inches above the cutting table.

⚠️ NOTE: The lifter ground terminal must be connected to the cutting table ground to provide measurement feedback for tip touch sensing. This feedback is essential for optimal cutting performance. See Figure 9.

Figure 9: Lifter Mounting
Torch Breakaway Assembly

The torch breakaway (229164) should be mounted to the lifter as shown in Figure 10.

⚠️ **CAUTION:** The breakaway uses extremely strong magnets to clamp the two halves of the breakaway unit together. Use extra care when you mate the two halves of the breakaway.

Hold the breakaway at a 45 degree angle to the mounting plate and carefully place the lower alignment pin into the mating depression on the breakaway back plate. Slowly angle the breakaway toward the back plate. Use care to avoid pinching your fingers between the two halves. After installation, it is almost impossible to separate the two halves without the leverage of the mounting block and torch.

![Figure 10: Torch Breakaway](image)
Torch Mounting Block Kit

Mount the torch mounting block kit to the lifter torch breakaway assembly. See Figure 11.

The mounting blocks are available in three sizes as listed.

- 128277 Torch mounting block 1 3/8" diameter
- 128278 Torch mounting block 1 3/4" diameter
- 128279 Torch mounting block 2" diameter

Figure 11: Torch Mounting Clamp
System Cables

Install system cables as shown in Figure 12. All cables should be properly shielded with shield connections at both ends of the cables. If possible, route all PHC cables away from high power plasma cables. If both the plasma high power and PHC cables must share a cable track, it is recommended that they are separated as much as possible in the cable track. For reliable operation, all grounds must be connected to machine grounds as directly as possible.

Figure 12: System Cables

Note: If you are using a Powermax with a built-in voltage divider, use the Powermax interface cable 123896.
Grounding Requirements

WARNING!
To ensure personal safety and reduce electromagnetic interference (EMI), the PHC system must be properly grounded.

NOTE: For reliable operation, the lifter ground terminals must be connected to the ground on the cutting table ground to provide measurement feedback for tip touch sensing. The plasma interface ground terminals must be connected to the plasma power supply positive ground to provide measurement feedback for arc voltage. Both types of feedback are essential for optimal cutting performance.

Power cord grounding
The PHC control module must be properly grounded through the power cord according to national or local electrical codes.

Protective earth ground
Install protective earth (PE) grounding cables to the three PHC components (control unit, lifter, and plasma interface,) as shown in Figure 13. Grounding must comply with national or local electrical requirements.

Note: The PE (Ground) cables must be supplied by the customer.

Figure 13: System Grounding
PHC Interface Signals

Most of the PHC interface signals are through optoisolators. Figure 14 shows the details of connecting the IO to external switches, relays, transistors, and other circuitry. The figure shows examples using both the internally available isolated +12V source and using an external voltage source. Do not use an external voltage higher than +24V with inputs without adding some additional series resistance.

Note: The “Plasma Start” output to the plasma power supply is a relay dry contact closure.

WARNING!

Do not exceed 24V or 30mA in or out of any optoisolator. Observe correct signal polarity to prevent damage.

Example Inputs

External Circuitry
- Use Internal PHC +12V Supply
- Use External +24V Supply
- Use External +24V Supply

Sensor PHC Internal Circuitry
- Inputs
- Outputs

Example Outputs

External Circuitry
- Use Internal PHC +12V Supply
- Use External +24V Supply
- Use External +24V Supply

Figure 14: General Interfacing Examples
CNC Interface Signals

See Figure 14 on page 29 for an illustration.

<table>
<thead>
<tr>
<th>Name</th>
<th>Pair ~ Pin #s (wire color)</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Start</td>
<td>In + 11 (red) ~ In - 23 (blue)</td>
<td>Isolator input</td>
</tr>
<tr>
<td>Auto Disable / Corner Hold</td>
<td>In + 10 (red) ~ In - 22 (green)</td>
<td>Isolator input</td>
</tr>
<tr>
<td>IHS Sync</td>
<td>In + 9 (red) ~ In - 21 (white)</td>
<td>Isolator input</td>
</tr>
<tr>
<td>IHS Complete</td>
<td>Out + 18 (black) ~ Out - 5 (yellow)</td>
<td>Isolator output</td>
</tr>
<tr>
<td>Motion</td>
<td>Out + 17 (black) ~ Out - 4 (blue)</td>
<td>Isolator output</td>
</tr>
<tr>
<td>Retract Complete</td>
<td>Out + 16 (black) ~ Out - 3 (green)</td>
<td>Isolator output</td>
</tr>
<tr>
<td>Error or Breakaway</td>
<td>Out + 15 (black) ~ Out - 2 (white)</td>
<td>Isolator output</td>
</tr>
<tr>
<td>(DIP switch selectable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlock</td>
<td>14 (black) ~ 1 (red)</td>
<td>Isolator & relay coil</td>
</tr>
<tr>
<td>Field +12V</td>
<td>12 (red), 24 (yellow), 13 (yellow),</td>
<td>Field power output</td>
</tr>
<tr>
<td></td>
<td>25(brown)</td>
<td></td>
</tr>
<tr>
<td>Field Common</td>
<td>6 (brown), 19 (black), 8 (black), 20</td>
<td>Field power common</td>
</tr>
<tr>
<td></td>
<td>(orange)</td>
<td></td>
</tr>
</tbody>
</table>

Note: All required signals are shown in bold. All other signals are optional for multiple torch operation, improved performance, or reduction in cycle times.

WARNING:
Observe optoisolator signal polarities to prevent damage to the control unit.

CNC Signal Descriptions

Use a customer supplied mating 25-pin D subconnector or cut off the unused connector and wire directly to the appropriate signals.

Cycle Start
This signal is an output from the CNC and an input to the PHC. The CNC activates this signal to begin the Initial Height Sensing and start a plasma cut.

Auto Disable / Corner Hold
This output from the CNC is activated to turn off the automatic voltage control and freeze the position of the torch. This signal is optional but improves performance and is usually used to prevent diving in corners. This signal is required if PHC pierce delay has been disabled and the CNC is controlling the pierce delay time. In this case, the “Auto Disable” is activated during the “Pierce Delay Time” as well as the subsequent “Accel Delay” to allow machine motion to reach a steady cutting speed.
IHS Sync
This optional CNC output is used to synchronize torches in a multiple torch installation. The CNC issues this signal to delay plasma torch ignition until all torches in a multiple torch configuration have completed their IHS sequence and are in position and ready to fire. When the CNC releases (de-activates) this signal, the torch ignites and the plasma torch begins piercing.

For single torch installations, this signal is not required and can be left unconnected.

IHS Complete
This optional signal is an output from the PHC and an input to the CNC. This signal is used to indicate that initial height sensing is complete and that a torch is in position and ready to fire. For multiple torch installations, the CNC waits for all active torches to indicate IHS COMPLETE before simultaneously releasing all IHS SYNC signals to allow the torches to ignite.

For single torch installations, this signal is not required.

Motion
This signal is an output from the PHC and an input to the CNC. The signal is issued after plasma ignition and the PHC set pierce delay time. It indicates to the CNC that the pierce delay is complete and the cut motion should begin. If the CNC performs all pierce delay timing, the EXT_PIERCE_DELAY - DIP switch on the PHC should be turned ON which forces the PHC pierce delay to be zero and disables the front panel pierce delay control. If the CNC is controlling the pierce delay, the CNC uses the AUTO_DISABLE / HOLD signal to delay the arc voltage control until the pierce and accel times have elapsed.

Retract Complete
This signal is an output from the PHC that is active when a cut has been completed and the torch has been retracted to the selected retract height. The CNC can use this signal to delay rapid transit to the next cut until the torch has been raised and cleared any tip-ups. The use of this signal is optional.

Error
This signal is output by the PHC for errors. The actual error number displays on the PHC front panel LED display.

Interlock
This is a normally closed contact closure provided by the CNC to allow PHC motion. If this contact is opened, the PHC motor drive does not receive power.

⚠️ **NOTE:** This signal is required for operation of the PHC. If this signal is not used as an external interlock, use a jumper to satisfy the input.
Figure 15: Basic CNC Interface
Plasma Interface Signals

WARNING: HAZARDOUS VOLTAGE & ENERGY The plasma interface signals from plasma cutting equipment without an internal voltage divider are directly connected to the plasma cutting circuit output. To prevent electrical shock and energy hazards, wiring from the plasma cutting circuit of the power supply to the plasma interface (228256) must be enclosed or protected.

Hypertherm Powermax systems are equipped with a factory-installed internal voltage divider which is designed to be safely connected without tools to the Sensor™ PHC plasma interface using the standard PHC to Powermax cable provided by Hypertherm.

The plasma interface (228256) includes the arc voltage divider for connection to Hypertherm Powermax plasma supplies not equipped with a factory installed internal voltage divider and other plasma supplies. However, the wiring from the plasma cutting circuit to the 228256 must be enclosed or protected for safe operation and use. The plasma cutting circuit output ratings are printed on the data plate and vary by manufacturer and model up to 500 VDC and 400 ADC, such that contact with metal live parts of this connection under normal operating and fault conditions can result in death or burns.

To make connections between the plasma cutting circuit and 228256:
- Use qualified service personnel only.
- Turn OFF and disconnect all power.
- Mount the 228256 as close as is practical to the entry point to the power supply. Permanent connection is recommended.
- If cord connected, use jacketed cables suitable for the environment.
 - Verify that the outer jacket of each interconnecting cable is protected from damage at the entry point to the power supply. A strain relief is recommended.
 - Verify that the outer diameter of the interconnecting cable fits the strain relief with provided 228256:
 - Plasma start, transfer grip: .114" - .250" diameter
 - Plasma interface grip: .064" - .210" diameter
 - Strip back the outer jacket and individual conductor insulation as needed.
 - Insert the outer jacket cable through the strain relief and make connections as shown in Figure 16 on page 34.
 - Verify the outer jacket is a min. of 1 inch (2.54 cm) inside the 228256 and tighten the strain relief(s).
- Before operating the equipment, verify that the connections are correct and that all live parts are enclosed and that all jacket/conductor insulation is protected against damage.
Plasma Interface Signals

<table>
<thead>
<tr>
<th>Name</th>
<th>15-pin D Subconnector Pin #s</th>
<th>Plasma Interface</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma start</td>
<td>2, 10</td>
<td>J1-1, J1-2 (dry contact)</td>
<td>Relay contact output</td>
</tr>
<tr>
<td>Hold ignition</td>
<td>Pos 3 Neg 11</td>
<td>J1-4 (+), J1-5 (-)</td>
<td>Isolator output</td>
</tr>
<tr>
<td>Transfer</td>
<td>Out + 4 Out - 12</td>
<td>J3-1 (+), J3-2 (-)</td>
<td>Isolator input</td>
</tr>
<tr>
<td>Arc voltage</td>
<td>Out + 8 Out - 15</td>
<td>Ground stud (+), Term (-)</td>
<td>Attenuated filtered analog</td>
</tr>
<tr>
<td>Field +12V</td>
<td>1, 9</td>
<td>J1-3</td>
<td>Field power output</td>
</tr>
<tr>
<td>Field common</td>
<td>5, 6, 7, 13, 14</td>
<td>J3-3</td>
<td>Field power common</td>
</tr>
</tbody>
</table>

Figure 16: Powermax Connections using Plasma Interface Unit

For a diagram of circuits on the plasma interface, see Figure 18 on page 36.
Connection to star ground on work table

Connect negative electrode voltage here.

Common for 12V output

Signals enter here

High voltage enter here

-Transfer input

+Transfer input

Start output (contact closure)

+12V output 50mA max

Hold output +

Hold output -

Figure 17: Plasma Interface
WARNING! For safety and proper operation this unit must be connected to positive ground.

Figure 18: Plasma Interface Connections

WARNING:
Observe signal polarities when connecting to optocouplers. Do not exceed 24Vdc on any signal lines. Do not exceed 30mA current from any input or output. Do not exceed 50mA total current drawn from Sensor™ internal +12V field supply. Failure to observe these warnings could damage the unit.
Plasma Start
This signal is a relay contact output from the PHC and an input the plasma power supply. The PHC activates this signal by closing the contact to start the plasma power supply.

WARNING: An interface to older plasma systems, such as the MAX100 or MAX200 must be implemented with a customer-supplied relay (see Figure 19). Older plasma systems draw large current levels through the PLASMA START input that are far in excess of the capability of the Sensor PHC START output.

Figure 19: Interfacing to Older Plasma Systems (MAX100 or MAX200)

Hold Ignition
This output from the PHC and input to the plasma power supply should be activated to delay the high frequency ignition of mechanized torches. This signal is usually issued to synchronize the ignition of multiple plasma torches. This signal can also be used to save cycle time by performing preflow during IHS. The use of this signal is optional but improves performance on plasma systems that can use it. This signal is not used for contact start torches installed on Powermax® plasma units.

Transfer
This signal is an output from the plasma power supply and an input the PHC. The plasma power supply activates this output to signal that arc transfer has occurred.
Lifter Interface Signals

These signals can be directly connected to a Sensor™ PHC standard lifter using the supplied cable.

<table>
<thead>
<tr>
<th>Lifter Interface Signals 9-Pin D Subconnector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Lower limit switch *</td>
</tr>
<tr>
<td>Upper limit switch *</td>
</tr>
<tr>
<td>Torch breakaway switch</td>
</tr>
<tr>
<td>Torch tip touch sense</td>
</tr>
<tr>
<td>Field +12V</td>
</tr>
<tr>
<td>Field common</td>
</tr>
</tbody>
</table>

* The PHC standard lifter does not include limit switches and the PHC detects the hard stop limits by monitoring motor speed.

Lower Limit Switch
This signal is an output from the lifter and an input to the PHC. The lifter can activate this signal to indicate that the lifter has reached the lower range of motion. The normally open/closed sense of this signal can be changed through setup DIP switch #14. The use of a limit switch is optional.

Upper Limit Switch
This signal is an output from the lifter and an input to the PHC. The lifter can activate this signal to indicate that the lifter has reached the upper range of motion. The normally open/closed sense of this signal can be changed through setup DIP switch #14. The use of a limit switch is optional.

Breakaway Switch
This signal is an output from the lifter and an input to the PHC. The lifter can activate this signal to indicate that the mechanical torch breakaway has tripped. The normally open/closed sense of this signal can be changed through setup DIP switch #15. The use of a torch breakaway switch is optional.
Lifter Power Connections

These connections can be made directly to a Sensor™ PHC standard lifter using the supplied cable.

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin #s</th>
<th>Signal Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor power – up direction</td>
<td>Positive 1 Negative 2</td>
<td>PWM H bridge output</td>
</tr>
<tr>
<td>Lifter brake</td>
<td>Positive 4 Negative 5</td>
<td>+24Vdc output</td>
</tr>
<tr>
<td>Chassis ground</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Motor Power

This signal is an output from the PHC. It is output from a PWM controlled “H” bridge motor drive. The maximum current level can be set using DIP switches #1 and #2. This output is intended to drive a 24Vdc permanent magnet motor.

Lifter Brake

This output from the PHC is a 24Vdc signal to an electromagnetic brake. When this signal is energized, the brake is released to allow lifter motion.
DIP Switch Setup

As shown in the figure above, the setup DIP switches are divided into two groups of eight switches. The top set of switches is numbered SW1 through SW8 and the bottom set of switches is numbered SW9 through SW16.

Switch Settings

Switch settings for control module operation and setup outlined below. **Note**: Default switch settings (as shipped) are indicated in **BOLD** text.

<table>
<thead>
<tr>
<th>SW1</th>
<th>SW2</th>
<th>Maximum Motor Current / Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>on</td>
<td>Max Current = 2 Amps, 50 Watts</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>Max Current = 3 Amps, 75 Watts *</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>Max Current = 4 Amps, 100 Watts</td>
</tr>
<tr>
<td>off</td>
<td>off</td>
<td>Max Current = 6 Amps, 150 Watts</td>
</tr>
</tbody>
</table>

Set DIP switches SW1 and SW2 to the rating for the current of the lifter motor. This is the maximum current that is applied and is directly related to the motor power rating. This setting is also used to determine the minimum applied current for stall sensing and to calculate the motor speed based on the measured motor voltage.

NOTE: For optimum performance it is important that these switches are set correctly. For the standard lifter, these switches should be set for 3 Amps.
Section 2: Installation and Setup

SW3 and SW4: Voltage Control Response / Gain

<table>
<thead>
<tr>
<th>Setting</th>
<th>Gain Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on on</td>
<td>Gain = Low = +/- 4V In Position Range</td>
</tr>
<tr>
<td>on off</td>
<td>Gain = Med Low = +/- 2V In Position Range *</td>
</tr>
<tr>
<td>off on</td>
<td>Gain = Med High = +/- 1V In Position Range</td>
</tr>
<tr>
<td>off off</td>
<td>Gain = High = +/- 0.5V In Position Range</td>
</tr>
</tbody>
</table>

Set DIP switches SW3 and SW4 to select the closed loop voltage control response. The DIP switches should be set for the highest gain possible that yields an acceptable control response. An acceptable response should be stable and should have a minimum overshoot. These settings are a function of the lifter and motor combination. For faster lifters use a lower gain setting. Faster settings can require the use of the “Corner Hold” signal from the CNC to prevent diving in the corners. This setting affects control.

SW5: IHS Slow Approach / Retract Speed

<table>
<thead>
<tr>
<th>Setting</th>
<th>Speed Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Speed = Low = 15% of Max Speed *</td>
</tr>
<tr>
<td>off</td>
<td>Speed = High = 30% of Max Speed</td>
</tr>
</tbody>
</table>

The setting of SW5 affects the speed of the torch when it approaches the plate during an IHS cycle. This speed is also used when the torch retracts from plate contact to the pierce height and during the first seconds of low speed manual motion. This setting is a compromise between positioning accuracy and cycle time. Set a speed that is as fast as possible and still provides the required IHS range and fine manual motion accuracy.

SW6: CNC Error Select

<table>
<thead>
<tr>
<th>Setting</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Normal – Error output on all errors *</td>
</tr>
<tr>
<td>off</td>
<td>Error output on Torch Breakaway only</td>
</tr>
</tbody>
</table>

The SW6 allows the user to select logic for error conditions. Select On to provide an output for all errors. Select Off to provide an output only when the torch breakaway input is active.

SW7: Auto Voltage Control Acceleration Delay

<table>
<thead>
<tr>
<th>Setting</th>
<th>Acceleration Delay Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Low – Enable Voltage Control 0.5 Second after Pierce delay *</td>
</tr>
<tr>
<td>off</td>
<td>High – Enable Voltage Control 2.5 Second after Pierce delay</td>
</tr>
</tbody>
</table>

The SW7 delay setting is used to allow the cutting machine to accelerate to steady state speed before starting the closed loop voltage control of torch height. The shorter delay should be used for most machines. For very large cutting machines, use the longer delay to avoid diving into the plate during machine acceleration.

SW8: External Pierce Delay

<table>
<thead>
<tr>
<th>Setting</th>
<th>Control Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>CNC controls pierce delay – Front panel Pierce delay is disabled</td>
</tr>
<tr>
<td>off</td>
<td>Normal – Internal Pierce Delay *</td>
</tr>
</tbody>
</table>

SW8 should be turned ON if the CNC controls the time for the pierce delay. When this switch is ON, the front panel control for pierce time is disabled and the PHC uses a pierce time of zero. The CNC issues the AUTO / CORNER HOLD command, waits for the MOTION signal, and begins timing the pierce delay. After the Pierce Time has elapsed, the CNC can begin the actual cutting machine motion and start to time the acceleration delay. After the acceleration delay time has elapsed, the CNC can remove the AUTO / CORNER HOLD and allow the PHC to control the torch height.
SW9 \(\text{and} \text{SW10} \quad \text{End of Cut Retract Time} \)

<table>
<thead>
<tr>
<th>Setting</th>
<th>End of Cut Retract Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>on on</td>
<td>Retract = Low = 0.25 Sec @ Max Speed (0.8” std lifter)</td>
</tr>
<tr>
<td>on off</td>
<td>Retract = Med Low = 0.5 Sec @ Max Speed (1.6” std lifter)*</td>
</tr>
<tr>
<td>off on</td>
<td>Retract = Med High = 1.0 Sec @ Max Speed (3.3” std lifter)</td>
</tr>
<tr>
<td>off off</td>
<td>Retract = High = 1.5 Sec @ Max Speed (5.0” std lifter)</td>
</tr>
</tbody>
</table>

SW9 and SW10 control the end of cut retract. This setting should be set as low as possible to achieve optimum cycle times and still clear worst case tip-ups. The end of cut retract moves at the maximum lifter speed.

SW11 \(\text{Automatic Kerf Detect} \)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Automatic Kerf Detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Normal – PHC the detects Kerf crossings and auto HOLD</td>
</tr>
<tr>
<td>off</td>
<td>Automatic Kerf Detection is disabled*</td>
</tr>
</tbody>
</table>

For the automatic kerf detection to operate properly, the kerf threshold pot must be adjusted to the correct level. The correct level is low enough to trip the kerf detection when crossing a kerf, but high enough that nuisance trips are avoided during normal cutting. This pot should be adjusted by viewing the yellow “corner / kerf hold LED” during a test cut.

SW12 \(\text{Preflow During IHS} \)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Preflow During IHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Plasma Start and Preflow during IHS with capable plasma systems</td>
</tr>
<tr>
<td>off</td>
<td>Normal – Plasma Start and Preflow after IHS – Contact Start Torch *</td>
</tr>
</tbody>
</table>

Note: This function must be disabled for Powermax® contact start torches.

This function is only used with high frequency start mechanized torches. With mechanized torches, this function can save cycle time by performing IHS and torch preflow during the same period of time. When “Preflow During IHS” is active, the “Start” and “Ignition Hold” output signals are applied to the plasma system during the IHS process. This allows the plasma system to begin the gas preflow requirement during the same period of time when the PHC lifter is positioning the torch at the correct pierce height. After the PHC lifter has been positioned at the correct pierce height, the Ignition Hold output is removed to allow the torch to start and the cutting process to begin.

SW13 \(\text{Reserved} \)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Reserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Normal</td>
</tr>
<tr>
<td>off</td>
<td>Special operation</td>
</tr>
</tbody>
</table>

SW14 \(\text{Lifter Limit Switches} \)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Lifter Limit Switches</th>
</tr>
</thead>
<tbody>
<tr>
<td>on (Sw NC)</td>
<td>Open on Limit – Use normally closed lifter inputs</td>
</tr>
<tr>
<td>off (Sw NO)</td>
<td>Close on Limit – or switches not used, lifter hard stops *</td>
</tr>
</tbody>
</table>

For the standard lifter, limit switches are not used. The PHC senses the lifter upper and lower limits by sensing when the lifter hard stops at the travel limits.
SW15 **Torch Breakaway Switch**

on (Sw NO) Open on Breakaway – Use normally open switch input *

off (Sw NC) Close on Breakaway – or switch not used

For the standard lifter, the torch breakaway uses a normally open proximity switch. When the breakaway is installed, the switch closes. When the breakaway is tripped, the switch opens again.

SW16 **Arc Voltage Calibration Mode**

on Display actual arc voltage during idle state for calibration

off Normal – Display set arc voltage during Idle state *

For normal operation, this switch should be set to OFF.

This switch is used to display the actual arc voltage on the PHC display. This allows the arc voltage to be calibrated by adjusting the Arc Voltage adjustment pot. When the calibration mode is active, the PHC displays “X.X.X.” with the X’s indicating the measured arc voltage and all the decimal points on to indicate calibration mode.

When calibration mode is active the display can be temporarily overridden by adjusting either the kerf detect level or the stall force. If you adjust either the kerf detect or stall force, a 0 to 10 reference level displays temporarily. After one second of inactivity the display reverts to the measured arc voltage.

⚠️ **NOTE:** The arc voltage calibration procedure should be performed on all new installations because the actual measured arc voltage accuracy is a combination of the individual plasma interface and control units.
Calibration Pot Setup

ARC - Arc Voltage Calibration
This trim pot is used to calibrate the actual arc voltage used for arc voltage control feedback. To calibrate the arc voltage, place the PHC into the arc voltage calibration mode by turning ON DIP switch #16. This causes the actual arc voltage to display on the 3 digit LED display. The user can either perform a test cut with a meter connected to the plasma supply output or connect a known voltage (250 Vdc max.) to the plasma interface arc voltage terminals (negative electrode and positive ground). Adjust the arc voltage pot until the display is equal to the applied voltage on the meter.

NOTE: For accurate operation, this procedure should be done for all new installations since the measured arc voltage accuracy is combination of the specific plasma interface and control units.

KERF - Auto Kerf Detection Level
This adjustment pot sets the auto kerf detection level. The auto kerf function must be enabled by turning ON the automatic kerf detect DIP switch #11. When this pot is adjusted with the PHC in calibration mode, the display temporarily shows a 0 to 10 reference level display. The auto kerf detection works by looking for a rapid change in the arc voltage. When the pot is adjusted toward the lower settings, the PHC looks for smaller voltage changes and the kerf detection is more sensitive. At higher settings, the kerf detection is less sensitive. The pot should be set sensitive enough to reliably detect kerf crossings but not so sensitive that false nuisance trips occur and degrade the height control performance. The operation of auto kerf detect can be checked by monitoring the yellow Hold LED on the PHC front panel during a plasma cut. If the threshold is properly set, the yellow Hold LED lights whenever a Kerf is crossed. Note that this LED also lights when an active Auto/Corner input is present on the CNC Interface or when the unit is set for Manual operation.

STALL - IHS Stall Sensing Level
This adjustment is used to set the Stall force sensing level during Initial Height Sense (IHS). When this pot is adjusted with the PHC in calibration mode, the display temporarily shows a 0 to 10 reference level display. The stall force is always used as a backup to the ohmic contact sensing in automatic mode. When it is set to the lower settings (turn counter-clockwise), the maximum applied force is lower during IHS. Higher settings (turn clockwise) increase the maximum applied force. If this setting is too high, the torch or consumables can be damaged or can deflect the work piece or trip the torch breakaway. Set this adjustment as low as possible but high enough so that false stalled plate detects do not occur in mid air. The adjustment can be checked by executing an IHS Test with the nozzle ohmic wire disconnected.
Section 3: Operation

Automated torch height control (THC) systems used in mechanized plasma cutting are used to provide the optimum height for the desired metal cutting process. The appropriate cut height is crucial to the plasma process to provide the ability to transfer the Arc to the work piece for piercing / cutting and for optimum cut quality (bevel angle, etc).

With the plasma process there is a direct relationship between the cut voltage and the torch height (gap between the metal work surface and the torch electrode). By using the automated control to monitor the working arc (cut) voltage, it can then control the THC to maintain a specific voltage set point.
Automatic Operation

Automatic voltage control operation is selected by placing the lower center toggle switch in the upper auto position. In this mode, the unit automatically performs IHS to the set pierce height, ignite the plasma torch, wait for the torch to pierce the plate, and begin the cutting machine motion.

The basic Sensor™ PHC auto operation setup consists of three steps:

1. **Set arc voltage**
 Use the larger multi-turn adjustment, to set the arc voltage on the display. The starting point for this voltage should be included in the cut charts supplied with your plasma system. It is important to remember that this voltage is just a starting point since the actual arc voltage depends on consumable wear, torch lead lengths, gas flow rates, and machine motion. For optimal cut quality you must make small adjustments to the nominal arc voltage that is specified in the cut charts. The important item to control is the torch-tip to work height during a cut. The arc voltage is just an indirect method to control this height.

2. **Set IHS retract or pierce height**
 Use the lower left rotary control to set the IHS retract height. As this control is adjusted, the display is temporarily overridden with a 0 to 10 reference level. This represents the desired pierce height. The actual height should be available in the cut charts supplied with the plasma system. This setting is approximate because it depends on whether the unit can sense the plate using ohmic contact or must rely on the backup limited force stall sensing.

 Check this setting by performing an IHS test and check for the correct pierce height. Each time the lower left IHS test switch is pressed, the torch alternates between the set IHS height and the end of cut retract height. Continue testing and fine tuning this adjustment until the desired IHS height is achieved.

 If the IHS speed (DIP SW #5) has been set to the normal low speed setting, then the IHS retract adjustment range should be between about 50 thousandths and 1/2 inch. If the IHS speed was set to the high speed setting, then the IHS retract adjustment range should be between about 1/10th inch and 1 inch.

3. **Set pierce delay time**
 Use the lower right rotary control to set the pierce time delay. As this control is adjusted, the display is temporarily overridden with a 0 to 4.0 second delay time. This is the time delay between igniting the torch and beginning the cut motion. The pierce delay is the time required for the plasma torch to initially cut through the plate. This time delay should be included in the cut charts provided with your plasma system. To provide more accuracy for the short delay settings, this rotary control is divided into two ranges. The first range covers the first ½ rotation of the control and provides a linear delay between 0 and 1 second. The second ½ rotation provides a linear delay of between 1 and 4 seconds.
Manual Operation

Manual lifter operation is selected by placing the lower center toggle switch in the lower manual position. In this mode, the unit manually jogs or slews slow or fast in the desired direction. If a cut is started while in the manual mode, the torch moves only in response to the front panel manual move commands. The IHS, voltage control, and end-of-cut retract functions are all disabled during manual mode.

Use your cut chart and the following steps to set up operations in manual mode:

1. Select manual mode with the toggle switch.
2. Set cut height with the up/down toggle switch.

The three types of manual motion are jog, slow and fast. Note that slow and fast types of manual motion are time-based.

Manual Jog

Manual jog motion is useful for fine-tuning the torch height in manual mode. When the lower right manual motion switch is momentarily switched into either the up or down position, the torch jogs approximately 20 thousandths in the desired direction. Repeat the momentary depression of the switch up or down to create a series of discrete jog motions in the desired direction. This is useful for fine-tuning the torch height in manual mode.

Slow Manual Motion

Continue to hold the manual motion switch for about ½ second after the jog has completed to create slow manual motion in the desired direction. This motion should be at the IHS speed as determined by DIP SW #5.

Fast Manual Motion

Hold the manual motion switch for about one second after the start of slow manual motion to create fast manual motion. The fast manual motion continues for as long as the manual motion switch is depressed.
Section 4: Troubleshooting

Error Codes

The red ERROR LED indicates abnormal conditions. The error code is displayed in the PHC 3 digit LED display as E.XX where XX represents the error number. The meanings are listed below. Most errors are cleared by either removing the abnormal condition or with the application of the next “Cycle Start” from the CNC.

E.01 CYCLE_START at power up Error

Reason: The CNC CYCLE_START input was active when the PHC was powered up.

Solution: Deactivate the CYCLE_START input on the CNC interface to clear the error.

E.02 Plate Contact at Home Error

Reason: Ohmic contact sensed the work piece when the torch was at the maximum retract position.

Possible causes:
- A short circuit in either the nozzle connection wire or the torch consumables.
• A coolant leak on a liquid cooled torch.

Solution: This error is reset on the next CYCLE_START.

E.03 Lifter Timeout Error

Reason: Lifter motion was commanded but the lifter destination was not sensed within the timeout period.
Possible causes:
• A mechanical problem in the lifter such as the motor coupling to the lifter mechanics has loosened.
• The torch lead set is binding and limiting the lifter motion.
• A problem with the motor wiring, motor drive, or with the motor itself.

Solution: The error is reset on the next CYCLE_START.

E.04 Limit Reached during Auto Operation

Reason: The lifter reaches a travel limit during arc voltage controlled operation.
Possible causes:
• The lifter does not have the range of travel to accommodate the thickness of the material being cut.
• Improper operation of either the limit switches or the limit switch wiring.

Solution: Adjust the lifter or torch mounting to make more effective use of the lifter travel range.

This error is reset on the next CYCLE_START.

E.05 IHS SYNC Timeout

Reason: The torch reaches the IHS pierce position and is waiting for the IHS_SYNC input from the CNC to be released.

Solution: Check the wiring of the IHS_SYNC input and the CNC programming for this signal. This error is reset on the next CYCLE_START.

The HIS_SYNC signal is usually only used for multiple torch installations.

E.06 Transfer Timeout Error

Reason: The Plasma torch was fired but that the TRANSFER signal was not received within 5 seconds

Possible causes:
• A faulty IHS sequence that resulted in an improperly high pierce height.
• Failure to transfer due to bad consumables.
• Improper plasma gas settings.
• Bad work piece grounding.
• The TRANSFER signal on the power supply interface is missing or improperly connected to the PHC Plasma Interface

Solution: The next CYCLE_START resets this error.

E.07 Lost Plasma Arc Error

Reason: The plasma torch lost transfer during operation before CYCLE_START was removed

Possible causes:
• Cutting off the edge of the plate.
• Bad consumables.
• Improper height control settings.

Solution: The next CYCLE_START resets this error.

E.08 Torch Breakaway Error

Reason: The torch breakaway has tripped.

Possible causes:
• The torch crashed into the work piece because of tip-ups or improper height control setup.

Solution: If a torch breakaway is not installed, turn the setup DIP switch #15 on the PHC to OFF (down) to ignore this input.

If a torch breakaway is installed, see Torch breakaway error on page 53 for a troubleshooting procedure.
Section 4: Troubleshooting

E.09 Low Input Power Error
Reason: The PHC input power is 20% below the nominal voltage.
Solution: Increase the input voltage to within the nominal operating range.

E.10 High Input Voltage Error
Reason: The PHC input power is 15% above the nominal voltage.
Solution: Decrease the input voltage to within the nominal operating range.

E.11 Over-Temperature Error
Reason: The motor drive circuitry has experienced an over-temperature shutdown.
Solution: Allow the unit to cool down.

E.12 Interlock Tripped Error
Reason: The External Interlock has been tripped.
Solution: Verify that there is a contact closure across the External Interlock input on the CNC Interface connector.

E.13 Excess Plate Contact Error
Reason: The torch tip made excess contact with the plate during a short period of time.
- The voltage set point is too low.
- The consumables are worn and the voltage set point needs to be increased.
Solution: The next CYCLE.START resets this error.

E.99 Internal Software Error
Reason: An abnormal, unexpected condition occurred in the software.
Solution: Perform a power up reset of the PHC.
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Error LED and Error code are displayed.</td>
<td>➢ Note the error code number and refer to the detailed list of error indications on page 49.</td>
</tr>
<tr>
<td>No response to CYCLE START Input</td>
<td>➢ Check the power switch on the PHC.</td>
</tr>
<tr>
<td></td>
<td>➢ Check power connections.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the fuse in the power entry module.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the cycle start connection.</td>
</tr>
<tr>
<td>Torch Ignites before IHS is complete</td>
<td>➢ Check that preflow during IHS is disabled – DIP SW #12 Off.</td>
</tr>
<tr>
<td></td>
<td>➢ Check plasma Corner Hold Input if it is used.</td>
</tr>
<tr>
<td>No IHS motion</td>
<td>➢ Check that the PHC is in auto mode.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the torch lead set is not binding.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the stall force is not set too low – increase stall force setup adjustment.</td>
</tr>
<tr>
<td>Inaccurate IHS using ohmic contact</td>
<td>➢ Check that the PHC is in auto mode.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the ohmic contact wire is connected.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the torch retaining cap is tight.</td>
</tr>
<tr>
<td></td>
<td>➢ Check for water on the plate. If there is water present, disconnect the ohmic wire and use stall force only.</td>
</tr>
<tr>
<td></td>
<td>➢ Check for oil or paint coating on the plate. If they are present, use stall force only.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the nozzle, shield, or both and clean or replace them.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the work plate connection.</td>
</tr>
<tr>
<td>Inaccurate IHS using stall force</td>
<td>➢ To disable ohmic sensing, disconnect the wire from the torch tip.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the stall force is set correctly.</td>
</tr>
<tr>
<td></td>
<td>➢ Check for excessive plate deflection.</td>
</tr>
<tr>
<td></td>
<td>➢ Check plate support.</td>
</tr>
<tr>
<td></td>
<td>➢ Increase the IHS setting to compensate for plate deflection.</td>
</tr>
<tr>
<td>Torch fails to ignite</td>
<td>➢ Check that plasma is powered and operational.</td>
</tr>
<tr>
<td></td>
<td>➢ Check for proper IHS height.</td>
</tr>
<tr>
<td></td>
<td>➢ Check that the IHS SYNC input from the CNC is not active.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the torch consumables.</td>
</tr>
<tr>
<td>Torch fails to Transfer</td>
<td>➢ Check that the pierce height is not too high.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the work plate connection.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the torch consumables.</td>
</tr>
<tr>
<td></td>
<td>➢ Check the preflow gas flow rate.</td>
</tr>
</tbody>
</table>
Problem | Solution
--- | ---
Arc extinguishes after Transfer with large pierce hole | ✓ Check that the pierce delay is not too long.
✓ Check that the machine motion output is active and connected to the CNC.
✓ Check that the CNC is active and the set machine speed is appropriate.

Torch begins cutting before the pierce is complete | ✓ Check that the pierce delay is not set too short.

Torch dives toward plate immediately after voltage control begins | ✓ Increase the Set Arc Voltage value.
✓ Increase Machine Accel Delay – DIP SW#7 Off.
✓ Check the arc voltage calibration.

Torch retracts from plate immediately after voltage control begins | ✓ Decrease the Set Arc Voltage value.
✓ Increase the Set Pierce Height value.
✓ Check the arc voltage calibration.

Erratic voltage control | ✓ Check all system ground connections.
✓ Check the torch for cooling water leaks.

Failure to retract at end of cut | ✓ Check End of Cut Retract settings – DIP SW #9 & #10.
✓ Check for torch and lead set binding or obstruction.

Torch breakaway error
If the torch breakaway has not tripped, check the connections from the lifter to the PHC:

1. To test the switch, touch a piece of metal to the target on the magnetic sensor at the top of the breakaway. The LED in the middle of the sensor lights up if the switch is working.

![Target and LED diagram](https://via.placeholder.com/150)

2. Verify that the ground is seamless from the lifter interface board to the start ground on the work table. See Figure 13 on page 12.

3. Verify that the magnetic sensor cable is connected to the lifter interface board. This connector is third from the top of the board.
4. Test the connection by attaching a jumper between pins 7 and 8 on the 9-pin D subconnector.

If the E08 error disappears, repair the connection between the magnetic sensor and the lifter interface board.

5. If the error message remains, test the cable and the lifter interface connector on the PHC:
 a. To test the cable, verify the continuity of each wire that connects the lifter to the PHC.
 b. To test the connector on the PHC, place a jumper between pins 7 and 8 of the 9-pin D subconnector.

If the E08 error disappears from the console, the fault is in the cable. If the error persists, the fault is in the PHC. Contact Technical Support.
Parts and Kits

<table>
<thead>
<tr>
<th>Kit Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured PHC Kits</td>
<td></td>
</tr>
<tr>
<td>228214</td>
<td>Sensor PHC with control module, lifter, and 50-foot cable</td>
</tr>
<tr>
<td>228242</td>
<td>Sensor PHC without lifter station</td>
</tr>
<tr>
<td>228243</td>
<td>Sensor PHC without lifter or 123895</td>
</tr>
<tr>
<td>228244</td>
<td>Sensor PHC without control module</td>
</tr>
<tr>
<td>228245</td>
<td>Sensor PHC without plasma interface</td>
</tr>
<tr>
<td>PHC Replacement Parts</td>
<td></td>
</tr>
<tr>
<td>228199</td>
<td>PHC control module assembly, complete</td>
</tr>
<tr>
<td>228200</td>
<td>PCB assembly, PHC processor</td>
</tr>
<tr>
<td>228201</td>
<td>PCB assembly, PHC motor drive</td>
</tr>
<tr>
<td>228202</td>
<td>Cable kit, Sensor PHC enclosure (line filter, CPC harness, wired pot)</td>
</tr>
<tr>
<td>228203</td>
<td>Bezel with Red Lens, for PHC control module</td>
</tr>
<tr>
<td>228204</td>
<td>Fuse, 1.6A Slo Blo, 1/4 x 1 1/4” (2 required)</td>
</tr>
<tr>
<td>PHC Lifter Replacement Parts</td>
<td></td>
</tr>
<tr>
<td>228205</td>
<td>Torch lifter station, 6” stroke, breakaway, PHC, complete</td>
</tr>
<tr>
<td>228206</td>
<td>Motor, PHC lifter (24v, w/brake, terminated)</td>
</tr>
<tr>
<td>228207</td>
<td>Coupling, PHC lifter</td>
</tr>
<tr>
<td>228191</td>
<td>Wire, ohmic contact, Ti or PHC lifter</td>
</tr>
<tr>
<td>228192</td>
<td>PCB assembly, Ti or PHC lifter interface</td>
</tr>
<tr>
<td>228193</td>
<td>Magnetic breakaway assembly, PHC/Edge Ti</td>
</tr>
<tr>
<td>228194</td>
<td>Breakaway Sensor/cable with fastener, terminated</td>
</tr>
<tr>
<td>228195</td>
<td>Ti or PHC upper sheet metal cover with fasteners</td>
</tr>
<tr>
<td>228196</td>
<td>Ti or PHC lower sheet metal cover with fasteners</td>
</tr>
<tr>
<td>228197</td>
<td>Ti or PHC lifter silicone end stop and fastener</td>
</tr>
<tr>
<td>228208</td>
<td>Ball screw, 2mm pitch, with nut and bearing</td>
</tr>
</tbody>
</table>

Recommended THC Slide Maintenance

Servicing a ball screw generally means cleaning and re-lubrication. The ball screw should be cleaned carefully by wiping away all used grease, dust and dirt with a clean, dry cloth. If possible, move the nut several times over the full travel to ensure that as much old grease as possible comes out of the nut. Do not use any detergents or other cleaning fluids, such as trichloroethylene, alcohol or acetone.

NOTE: Do not remove or disassemble the ball screw or ball screw nut. After cleaning, apply a thin layer of fresh grease over the entire surface of the screw. After re-lubrication, the assembly should be operated through its stroke several times at low speeds and low loads to ensure that all contact surfaces of nut, balls and screw are covered with a grease film.

Interval

Every six months
Lubricant
For the linear bearing carriage and ball screw, the bearing manufacturer suggests grease with the following characteristics:
1. Lithium soap-based grease
2. NLGI Grade 2
3. No metallic particles in the grease.

Examples of compatible lubricants:
- Mobil-1 Synthetic grease and is available at most Auto Parts Stores.
- Mobilith SHC220 is another example that should be available at an industrial supply such as McMaster-Carr.

The linear bearing carriage uses a grease fitting and the ball screw lubricant is applied to the screw itself:

To lubricate the THC slide:
1. Position the lifter approximately at the top of stroke.
2. Press the E-stop on the Ti (or power off the PHC).
3. Remove the lifter lower cover.
4. Clean the visible portion of the ball screw and bearing rails with a clean dry cloth.
5. Enable the Ti (or PHC).
6. Slew to the bottom of the stroke.
7. Press the E-stop on the Ti (or power off the PHC).
8. Clean the visible portion of the ball screw and bearing rails with a clean dry cloth.
9. Repeat several times (slewing back and forth to distribute and remove grease/debris).
10. Grease the bearing grease port with a needle-type grease gun.
11. Apply a thin coat of grease to the ball screw threads.
12. Slew back and forth do distribute grease, while checking for binding or erratic movement.
13. Replace cover.
Appendix A: Interfacing to a Custom Lifter

The performance of the Sensor™ PHC is tightly coupled to the lifter and motor characteristics. The Sensor™ PHC was designed as a conventional plasma height control and the lifter does not include any position feedback. All lifter moves are timed moves at regulated speeds. The Sensor™ PHC microprocessor uses both the DC motor’s back generated voltage and the DC motor’s ohmic component to calculate the motor feedback speed. The lifter screw pitch affects the lifter linear speed and the control loop gain when operating with arc voltage. The screw pitch also affects the limited stall force sensing. The lifter friction and maximum torch weight affect the point at which the lifter requires a brake to maintain position. For these reasons, the motor and lifter characteristics are critical and must be tightly controlled.

Requirements

The following is a partial list of lifter and motor characteristics that are compatible with this controller.

- Lifter Ball screw pitch = 2mm/rev
- Lifter with limit switches or lifter with soft mechanical end stops
- Lifter capable of 200 in/min.
- Lifter should have low backlash and little mechanical play
- If the functions are required the lifter should provide for the electrical interface to limit switches, breakaway switches, and torch tip sensing. Contact Hypertherm Automation Engineering for information concerning the lifter signal interface.
- Motor should be a 24Vdc permanent magnet type
- Motor should turn 2500 RPM at 24Vdc. Alternatively, the motor RPM at 24Vdc should be matched with the lifter ball screw pitch/ gear reduction/ pulley reduction so that the combination results in 200 in / min of lifter linear speed.
- Motor should have 2A, 3A, 4A, or 6A max current rating.
- Motor resistance should be about 20% of full-scale rating. For example, a 3A rated motor should have an ohmic resistance of approximately \(\frac{24}{3} \times 20\% = 1.6 \text{ Ohms} \)
- Depending on the torch weight load and lifter friction, you may need a brake to hold position.

⚠️ WARNING:

The performance of the Sensor™ PHC is tightly coupled to the lifter and motor characteristics. To ensure proper operation, a non-standard customer designed lifter should be fully tested with this controller under all anticipated operating conditions.