powermax1650®

Plasma Arc Cutting System

Service Manual
804470 Revision 2
Hypertherm, Inc.
Etna Road, P.O. Box 5010
Hanover, NH 03755 USA
603-643-3441 Tel (Main Office)
603-643-5352 Fax (All Departments)
info@hypertherm.com (Main Office Email)
800-643-9878 Tel (Technical Service)
service@hypertherm.com (Technical Service Email)
800-737-2978 Tel (Customer Service)
customer.service@hypertherm.com (Customer Service Email)

Hypertherm Automation, LLC
5 Technology Drive, Suite 300
West Lebanon, NH 03755 USA
603-298-7970 Tel
603-298-7977 Fax

Hypertherm Plasmatechnik, GmbH
Technologiepark Hanau
Rodenbacher Chaussee 6
63457 Hanau-Wolfgang, Deutschland
49 6181 58 2100 Tel
49 6181 58 2134 Fax
49 6181 58 2123 (Technical Service)

Hypertherm (S) Pte Ltd.
No. 19 Kaki Bukit Road 2
K.B. Warehouse Complex
Singapore 417847, Republic of Singapore
65 6 841 2489 Tel
65 6 841 2490 Fax
65 6 841 2489 (Technical Service)

Hypertherm UK, Ltd.
9 Berkeley Court, Manor Park
Runcorn, Cheshire, England WA7 1TQ
44 1928 579 074 Tel
44 1928 579 604 Fax

France
15 Impasse des Rosiers
95610 Eragny, France
00 800 3324 9737 Tel
00 800 4973 7329 Fax

Hypertherm S.r.l.
Via Torino 2
20123 Milano, Italia
39 02 725 46 312 Tel
39 02 725 46 400 Fax
39 02 725 46 314 (Technical Service)

Hypertherm Europe B.V.
Vaartveld 9
4704 SE Roosendaal, Nederland
31 165 596907 Tel
31 165 596901 Fax
31 165 596908 Tel (Marketing)
31 165 596900 Tel (ETSO – Technical Service)
00 800 49 73 7843 Tel (ETSO – Technical Service
toll-free in Europe)

Japan
1952-14 Yata-Natsumegi
Mishima City, Shizuoka Pref.
411-0801 Japan
81 0 559 75 7387 Tel
81 0 559 75 7376 Fax

Hypertherm Brasil Ltda.
R. Visconde de Santa Isabel, 20 – Sala 611
Vila Isabel, RJ
Brasil CEP 20560-120
55 21 2278 6162 Tel
55 21 2578 0947 Fax
EMC INTRODUCTION

Hypertherm’s CE-marked equipment is built in compliance with standard EN50199. The equipment should be installed and used in accordance with the information below to achieve electromagnetic compatibility.

The limits required by EN50199 may not be adequate to completely eliminate interference when the affected equipment is in close proximity or has a high degree of sensitivity. In such cases it may be necessary to use other measures to further reduce interference.

This plasma equipment is designed for use only in an industrial environment.

INSTALLATION AND USE

The user is responsible for installing and using the plasma equipment according to the manufacturer’s instructions. If electromagnetic disturbances are detected then it shall be the responsibility of the user to resolve the situation with the technical assistance of the manufacturer. In some cases this remedial action may be as simple as earthing the cutting circuit, see Earthing of Workpiece. In other cases it could involve constructing an electromagnetic screen enclosing the power source and the work complete with associated input filters. In all cases electromagnetic disturbances must be reduced to the point where they are no longer troublesome.

ASSESSMENT OF AREA

Before installing the equipment the user shall make an assessment of potential electromagnetic problems in the surrounding area. The following shall be taken into account:

- a. Other supply cables, control cables, signalling and telephone cables; above, below and adjacent to the cutting equipment.
- b. Radio and television transmitters and receivers.
- c. Computer and other control equipment.
- d. Safety critical equipment, for example guarding of industrial equipment.
- e. Health of the people around, for example the use of pacemakers and hearing aids.
- f. Equipment used for calibration or measurement.
- g. Immunity of other equipment in the environment. User shall ensure that other equipment being used in the environment is compatible. This may require additional protection measures.
- h. Time of day that cutting or other activities are to be carried out.

The size of the surrounding area to be considered will depend on the structure of the building and other activities that are taking place. The surrounding area may extend beyond the boundaries of the premises.

METHODS OF REDUCING EMISSIONS

Mains Supply

Cutting equipment must be connected to the mains supply according to the manufacturer’s recommendations. If interference occurs, it may be necessary to take additional precautions such as filtering of the mains supply. Consideration should be given to shielding the supply cable of permanently installed cutting equipment, in metallic conduit or equivalent. Shielding should be electrically continuous throughout its length. The shielding should be connected to the cutting mains supply so that good electrical contact is maintained between the conduit and the cutting power source enclosure.

Maintenance of Cutting Equipment

The cutting equipment must be routinely maintained according to the manufacturer’s recommendations. All access and service doors and covers should be closed and properly fastened when the cutting equipment is in operation. The cutting equipment should not be modified in any way except for those changes and adjustments covered in the manufacturer’s instructions. In particular, the spark gaps of arc striking and stabilizing devices should be adjusted and maintained according to the manufacturer’s recommendations.

Cutting Cables

The cutting cables should be kept as short as possible and should be positioned close together, running at or close to the floor level.

Equipotential Bonding

Bonding of all metallic components in the cutting installation and adjacent to it should be considered. However, metallic components bonded to the workpiece will increase the risk that the operator could receive a shock by touching these metallic components and the electrode at the same time. The operator should be insulated from all such bonded metallic components.

Earthing of Workpiece

Where the workpiece is not bonded to earth for electrical safety, nor connected to earth because of its size and position, for example, ship's hull or building steelwork, a connection bonding the workpiece to earth may reduce emissions in some, but not all instances. Care should be taken to prevent the earthing of the workpiece increasing the risk of injury to users, or damage to other electrical equipment. Where necessary, the connection of the workpiece to earth should be made by a direct connection to the workpiece, but in some countries where direct connection is not permitted, the bonding should be achieved by suitable capacitances selected according to national regulations.

Note. The cutting circuit may or may not be earthed for safety reasons. Changing the earthing arrangements should only be authorized by a person who is competent to assess whether the changes will increase the risk of injury, for example, by allowing parallel cutting current return paths which may damage the earth circuits of other equipment. Further guidance is given in IEC TC26 (sec)94 and IEC TC26/108A/CD Arc Welding Equipment Installation and Use.

Screening and Shielding

Selective screening and shielding of other cables and equipment in the surrounding area may alleviate problems of interference. Screening of the entire plasma cutting installation may be considered for special applications.
WARNING
Genuine Hypertherm parts are the factory-recommended replacement parts for your Hypertherm system. Any damage caused by the use of other than genuine Hypertherm parts may not be covered by the Hypertherm warranty.

WARNING
You are responsible for the safe use of the Product. Hypertherm does not and cannot make any guarantee or warranty regarding the safe use of the Product in your environment.

GENERAL
Hypertherm, Inc. warrants that its Products shall be free from defects in materials and workmanship, if Hypertherm is notified of a defect (i) with respect to the power supply within a period of two (2) years from the date of its delivery to you, with the exception of G3 Series power supplies, which shall be within a period of three (3) years from the date of delivery to you, and (ii) with respect to the torch and leads within a period of one (1) year from its date of delivery to you. This warranty shall not apply to any Product which has been incorrectly installed, modified, or otherwise damaged. Hypertherm, at its sole option, shall repair, replace, or adjust, free of charge, any defective Products covered by this warranty which shall be returned with Hypertherm's prior authorization (which shall not be unreasonably withheld), properly packed, to Hypertherm’s place of business in Hanover, New Hampshire, or to an authorized Hypertherm repair facility, all costs, insurance and freight prepaid. Hypertherm shall not be liable for any repairs, replacement, or adjustments of Products covered by this warranty, except those made pursuant to this paragraph or with Hypertherm’s prior written consent. The warranty above is exclusive and is in lieu of all other warranties, express, implied, statutory, or otherwise with respect to the Products or as to the results which may be obtained therefrom, and all implied warranties or conditions of quality or of merchantability or fitness for a particular purpose or against infringement. The foregoing shall constitute the sole and exclusive remedy for any breach by Hypertherm of its warranty. Distributors/OEMs may offer different or additional warranties, but Distributors/OEMs are not authorized to give any additional warranty protection to you or make any representation to you purporting to be binding upon Hypertherm.

PATENT INDEMNITY
Except only in cases of products not manufactured by Hypertherm or manufactured by a person other than Hypertherm not in strict conformity with Hypertherm’s specifications and in cases of designs, processes, formulae, or combinations not developed or purported to be developed by Hypertherm, Hypertherm will defend or settle, at its own expense, any suit or proceeding brought against you alleging that the use of the Hypertherm product, alone and not in combination with any other product not supplied by Hypertherm, infringes any patent of any third party. You shall notify Hypertherm promptly upon learning of any action or threatened action in connection with any such alleged infringement, and Hypertherm’s obligation to indemnify shall be conditioned upon Hypertherm’s sole control of, and the indemnified party’s cooperation and assistance in, the defense of the claim.

LIMITATION OF LIABILITY
In no event shall Hypertherm be liable to any person or entity for any incidental, consequential, indirect, or punitive damages (including but not limited to lost profits) regardless of whether such liability is based on breach of contract, tort, strict liability, breach of warranties, failure of essential purpose or otherwise and even if advised of the possibility of such damages.

LIABILITY CAP
In no event shall Hypertherm’s liability, whether such liability is based on breach of contract, tort, strict liability, breach of warranties, failure of essential purpose or otherwise, for any claim action suit or proceeding arising out of or relating to the use of the Products exceed in the aggregate the amount paid for the Products that gave rise to such claim.

INSURANCE
At all times you will have and maintain insurance in such quantities and types, and with coverage sufficient and appropriate to defend and to hold Hypertherm harmless in the event of any cause of action arising from the use of the Products.

NATIONAL AND LOCAL CODES
National and Local codes governing plumbing and electrical installation shall take precedent over any instructions contained in this manual. In no event shall Hypertherm be liable for injury to persons or property damage by reason of any code violation or poor work practices.

TRANSFER OF RIGHTS
You may transfer any remaining rights you may have hereunder only in connection with the sale of all or substantially all of your assets or capital stock to a successor in interest who agrees to be bound by all of the terms and conditions of this Warranty.
Electromagnetic Compatibility ... i
Warranty .. ii

Section 1 Safety
Recognize Safety Information .. 1-2
Follow Safety Instructions .. 1-2
Cutting Can Cause Fire or Explosion ... 1-2
Electric Shock Can Kill ... 1-3
Cutting Can Produce Toxic Fumes ... 1-3
A Plasma Arc Can Cause Injury and Burns .. 1-4
Arc Rays Can Burn Eyes and Skin ... 1-4
Grounding Safety ... 1-4
Compressed Gas Equipment Safety ... 1-5
Gas Cylinders Can Explode If Damaged ... 1-5
Noise Can Damage Hearing ... 1-5
Pacemaker and Hearing Aid Operation ... 1-5
A Plasma Arc Can Damage Frozen Pipes ... 1-5
Additional Safety Information .. 1-5
Warning Label ... 1-6

Section 1a Sécurité
Identifier les consignes de sécurité ... 1a-2
Suivre les instructions de sécurité ... 1a-2
Danger Avertissement Précaution ... 1a-2
Le coupage peut provoquer un incendie ou une explosion 1a-2
Prévention des incendies, Prévention des explosions 1a-2
Risque d’explosion argon-hydrogène et méthane .. 1a-2
Détonation de l’hydrogène lors du coupage de l’aluminium 1a-2
Les chocs électriques peuvent être fatals ... 1a-3
Prévention des chocs électriques ... 1a-3
Le coupage peut produire des vapeurs toxiques .. 1a-3
L’arc plasma peut provoquer des blessures ou des brûlures 1a-4
Torches à allumage instantané ... 1a-4
Les rayons de l’arc peuvent brûler les yeux et la peau 1a-4
Protection des yeux, Protection de la peau, Zone de coupage 1a-4
Mise à la masse et à la terre .. 1a-4
Câble de retour, Table de travail, Alimentation ... 1a-4
Sécurité des bouteilles de gaz comprimé .. 1a-5
Les bouteilles de gaz comprimé peuvent exploser en cas de dommages 1a-5
Le bruit peut provoquer des problèmes auditifs .. 1a-5
Pacemakers et prothèses auditives ... 1a-5
Un arc plasma peut endommager les tuyaux gelés 1a-5
Étiquette de sécurité .. 1a-6
TABLE OF CONTENTS

Section 2 Specifications
Specifications – Power Supply ... 2-2
 Power Connection ... 2-2
 Engine Drives .. 2-3
 Duty Cycle ... 2-4
 Power Supply – Dimensions and Weight .. 2-4
Specifications – T100 Torches .. 2-5
Torch Dimensions ... 2-6
Symbols and Markings .. 2-7

Section 3 Maintenance
Controls and Indicators ... 3-2
Theory of Operation ...
 General ..
 Functional Description ..
Sequence of Operation ... 3-4
Troubleshooting ..
 Test Equipment ..
 Troubleshooting Procedures and Sequence 3-5
 Visual Inspection – External ... 3-5
 Visual Inspection – Internal ... 3-6
Resistance Checks ... 3-7
Troubleshooting Guide ... 3-9
Voltage Checks .. 3-14
Component Replacement .. 3-20
 Power Cord Replacement ... 3-20
 Torch Installation .. 3-21
 Filter Element Replacement .. 3-23
 Work Cable Replacement ... 3-24
 Capacitor Replacement ... 3-25
 Heat Sink Component Replacement .. 3-26

Section 4 Parts – Power Supply
Exterior ... 4-2
Interior Right Side .. 4-3
Back Interior Right Side ... 4-4
Interior Fan Side .. 4-5
Heat Sink Assembly .. 4-6
Recommended Spare Parts .. 4-7

Section 5 Parts List – Torch and Consumables
T100 Hand Torch Assembly ... 5-2
T100M Machine Torch Assembly .. 5-4
Torch Consumable Configurations .. 5-6
Recommended Spare Parts .. 5-8

Section 6 Wiring Diagrams
Timing Diagrams ... 6-2
Electrical Schematic .. 6-4
In this section:

- Recognize Safety Information .. 1-2
- Follow Safety Instructions ... 1-2
- Cutting Can Cause Fire or Explosion ... 1-2
- Electric Shock Can Kill .. 1-3
- Cutting Can Produce Toxic Fumes .. 1-3
- A Plasma Arc Can Cause Injury and Burns .. 1-4
- Arc Rays Can Burn Eyes and Skin ... 1-4
- Grounding Safety .. 1-4
- Compressed Gas Equipment Safety .. 1-5
- Gas Cylinders Can Explode If Damaged .. 1-5
- Noise Can Damage Hearing ... 1-5
- Pacemaker and Hearing Aid Operation .. 1-5
- A Plasma Arc Can Damage Frozen Pipes .. 1-5
- Additional Safety Information .. 1-5
- Warning Label .. 1-6
RECOGNIZE SAFETY INFORMATION

The symbols shown in this section are used to identify potential hazards. When you see a safety symbol in this manual or on your machine, understand the potential for personal injury, and follow the related instructions to avoid the hazard.

FOLLOW SAFETY INSTRUCTIONS

Read carefully all safety messages in this manual and safety labels on your machine.

- Keep the safety labels on your machine in good condition. Replace missing or damaged labels immediately.
- Learn how to operate the machine and how to use the controls properly. Do not let anyone operate it without instruction.
- Keep your machine in proper working condition. Unauthorized modifications to the machine may affect safety and machine service life.

DANGER WARNING CAUTION

A signal word DANGER or WARNING is used with a safety symbol. DANGER identifies the most serious hazards.

- DANGER and WARNING safety labels are located on your machine near specific hazards.
- WARNING safety messages precede related instructions in this manual that may result in injury or death if not followed correctly.
- CAUTION safety messages precede related instructions in this manual that may result in damage to equipment if not followed correctly.

CUTTING CAN CAUSE FIRE OR EXPLOSION

Fire Prevention

- Be sure the area is safe before doing any cutting. Keep a fire extinguisher nearby.
- Remove all flammables within 35 feet (10 m) of the cutting area.
- Quench hot metal or allow it to cool before handling or before letting it touch combustible materials.
- Never cut containers with potentially flammable materials inside – they must be emptied and properly cleaned first.
- Ventilate potentially flammable atmospheres before cutting.
- When cutting with oxygen as the plasma gas, an exhaust ventilation system is required.

Explosion Prevention

- Do not use the plasma system if explosive dust or vapors may be present.
- Do not cut pressurized cylinders, pipes, or any closed container.
- Do not cut containers that have held combustible materials.

WARNING

Explosion Hazard
Argon-Hydrogen and Methane

Hydrogen and methane are flammable gases that present an explosion hazard. Keep flames away from cylinders and hoses that contain methane or hydrogen mixtures. Keep flames and sparks away from the torch when using methane or argon-hydrogen plasma.

WARNING

Hydrogen Detonation with Aluminum Cutting

- When cutting aluminum underwater, or with the water touching the underside of the aluminum, free hydrogen gas may collect under the workpiece and detonate during plasma cutting operations.
- Install an aeration manifold on the floor of the water table to eliminate the possibility of hydrogen detonation. Refer to the Appendix section of this manual for aeration manifold details.
ELECTRIC SHOCK CAN KILL

Touching live electrical parts can cause a fatal shock or severe burn.

- Operating the plasma system completes an electrical circuit between the torch and the workpiece. The workpiece and anything touching the workpiece are part of the electrical circuit.
- Never touch the torch body, workpiece or the water in a water table when the plasma system is operating.

Electric Shock Prevention

All Hypertherm plasma systems use high voltage in the cutting process (200 to 400 VDC are common). Take the following precautions when operating this system:

- Wear insulated gloves and boots, and keep your body and clothing dry.
- Do not stand, sit or lie on – or touch – any wet surface when using the plasma system.
- Insulate yourself from work and ground using dry insulating mats or covers big enough to prevent any physical contact with the work or ground. If you must work in or near a damp area, use extreme caution.
- Provide a disconnect switch close to the power supply with properly sized fuses. This switch allows the operator to turn off the power supply quickly in an emergency situation.
- When using a water table, be sure that it is correctly connected to earth ground.
- Install and ground this equipment according to the instruction manual and in accordance with national and local codes.
- Inspect the input power cord frequently for damage or cracking of the cover. Replace a damaged power cord immediately. **Bare wiring can kill.**
- Inspect and replace any worn or damaged torch leads.
- Do not pick up the workpiece, including the waste cutoff, while you cut. Leave the workpiece in place or on the workbench with the work cable attached during the cutting process.
- Before checking, cleaning or changing torch parts, disconnect the main power or unplug the power supply.
- Never bypass or shortcut the safety interlocks.
- Before removing any power supply or system enclosure cover, disconnect electrical input power. Wait 5 minutes after disconnecting the main power to allow capacitors to discharge.
- Never operate the plasma system unless the power supply covers are in place. Exposed power supply connections present a severe electrical hazard.
- When making input connections, attach proper grounding conductor first.
- Each Hypertherm plasma system is designed to be used only with specific Hypertherm torches. Do not substitute other torches which could overheat and present a safety hazard.

CUTTING CAN PRODUCE TOXIC FUMES

Cutting can produce toxic fumes and gases that deplete oxygen and cause injury or death.

- Keep the cutting area well ventilated or use an approved air-supplied respirator.
- Do not cut in locations near degreasing, cleaning or spraying operations. The vapors from certain chlorinated solvents decompose to form phosgene gas when exposed to ultraviolet radiation.
- Do not cut metal coated or containing toxic materials, such as zinc (galvanized), lead, cadmium or beryllium, unless the area is well ventilated and the operator wears an air-supplied respirator. The coatings and any metals containing these elements can produce toxic fumes when cut.
- Never cut containers with potentially toxic materials inside – they must be emptied and properly cleaned first.
- This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer.
SAFETY

A PLASMA ARC CAN CAUSE INJURY AND BURNS

Instant-On Torches
Plasma arc comes on immediately when the torch switch is activated.

The plasma arc will cut quickly through gloves and skin.
- Keep away from the torch tip.
- Do not hold metal near the cutting path.
- Never point the torch toward yourself or others.

ARC RAYS CAN BURN EYES AND SKIN

Eye Protection Plasma arc rays produce intense visible and invisible (ultraviolet and infrared) rays that can burn eyes and skin.
- Use eye protection in accordance with applicable national or local codes.
- Wear eye protection (safety glasses or goggles with side shields, and a welding helmet) with appropriate lens shading to protect your eyes from the arc’s ultraviolet and infrared rays.

Skin Protection Wear protective clothing to protect against burns caused by ultraviolet light, sparks and hot metal.
- Gauntlet gloves, safety shoes and hat.
- Flame-retardant clothing to cover all exposed areas.
- Cuffless trousers to prevent entry of sparks and slag.
- Remove any combustibles, such as a butane lighter or matches, from your pockets before cutting.

Cutting Area Prepare the cutting area to reduce reflection and transmission of ultraviolet light:
- Paint walls and other surfaces with dark colors to reduce reflection.
- Use protective screens or barriers to protect others from flash and glare.
- Warn others not to watch the arc. Use placards or signs.

Lens Shade

<table>
<thead>
<tr>
<th>Arc Current</th>
<th>AWS (USA)</th>
<th>ISO 4850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 100 A</td>
<td>No. 8</td>
<td>No. 11</td>
</tr>
<tr>
<td>100-200 A</td>
<td>No. 10</td>
<td>No. 11-12</td>
</tr>
<tr>
<td>200-400 A</td>
<td>No. 12</td>
<td>No. 13</td>
</tr>
<tr>
<td>Over 400 A</td>
<td>No. 14</td>
<td>No. 14</td>
</tr>
</tbody>
</table>

GROUNDING SAFETY

Work Cable Attach the work cable securely to the workpiece or the work table with good metal-to-metal contact. Do not connect it to the piece that will fall away when the cut is complete.

Work Table Connect the work table to an earth ground, in accordance with appropriate national or local electrical codes.

Input Power
- Be sure to connect the power cord ground wire to the ground in the disconnect box.
- If installation of the plasma system involves connecting the power cord to the power supply, be sure to connect the power cord ground wire properly.
- Place the power cord's ground wire on the stud first, then place any other ground wires on top of the power cord ground. Fasten the retaining nut tightly.
- Tighten all electrical connections to avoid excessive heating.
SAFETY

COMPRESSED GAS EQUIPMENT SAFETY

- Never lubricate cylinder valves or regulators with oil or grease.
- Use only correct gas cylinders, regulators, hoses and fittings designed for the specific application.
- Maintain all compressed gas equipment and associated parts in good condition.
- Label and color-code all gas hoses to identify the type of gas in each hose. Consult applicable national or local codes.

GAS CYLINDERS CAN EXPLODE IF DAMAGED

Gas cylinders contain gas under high pressure. If damaged, a cylinder can explode.
- Handle and use compressed gas cylinders in accordance with applicable national or local codes.
- Never use a cylinder that is not upright and secured in place.
- Keep the protective cap in place over valve except when the cylinder is in use or connected for use.
- Never allow electrical contact between the plasma arc and a cylinder.
- Never expose cylinders to excessive heat, sparks, slag or open flame.
- Never use a hammer, wrench or other tool to open a stuck cylinder valve.

NOISE CAN DAMAGE HEARING

Prolonged exposure to noise from cutting or gouging can damage hearing.
- Use approved ear protection when using plasma system.
- Warn others nearby about the noise hazard.

A PLASMA ARC CAN DAMAGE FROZEN PIPES

Frozen pipes may be damaged or can burst if you attempt to thaw them with a plasma torch.

PACEMAKER AND HEARING AID OPERATION

Pacemaker and hearing aid operation can be affected by magnetic fields from high currents. Pacemaker and hearing aid wearers should consult a doctor before going near any plasma arc cutting and gouging operations.

To reduce magnetic field hazards:
- Keep both the work cable and the torch lead to one side, away from your body.
- Route the torch leads as close as possible to the work cable.
- Do not wrap or drape the torch lead or work cable around your body.
- Keep as far away from the power supply as possible.

ADDITIONAL SAFETY INFORMATION

1. ANSI Standard Z49.1, Safety in Welding and Cutting, American Welding Society, 550 LeJeune Road P.O. Box 351020, Miami, FL 33135
3. ANSI Standard Z87.1, Safe Practices for Occupation and Educational Eye and Face Protection, American National Standards Institute, 1430 Broadway, New York, NY 10018
4. AWS F4.1, Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances, American Welding Society 550 LeJeune Road, P.O. Box 351040, Miami, FL 33135
5. AWS F5.2, Recommended Safe Practices for Plasma Arc Cutting, American Welding Society 550 LeJeune Road, P.O. Box 351040, Miami, FL 33135
6. CGA Pamphlet P-1, Safe Handling of Compressed Gases in Cylinders, Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202
8. NFPA Standard 51B, Cutting and Welding Processes, National Fire Protection Association 470 Atlantic Avenue, Boston, MA 02210
SAFETY

WARNING LABEL
This warning label is affixed to some power supplies. It is important that the operator and maintenance technician understand the intent of these warning symbols as described. The numbered text corresponds to the numbered boxes on the label.

1. Cutting sparks can cause explosion or fire.
 1.1 Keep flammables away from cutting.
 1.2 Keep a fire extinguisher nearby, and have a watchperson ready to use it.
 1.3 Do not cut on any closed containers.

2. The plasma arc can cause injury and burns.
 2.1 Turn off power before disassembling torch.
 2.2 Do not hold the material near cutting path.
 2.3 Wear complete body protection.

3. Electric shock from torch or wiring can kill. Protect yourself from electric shock.
 3.1 Wear insulating gloves. Do not wear wet or damaged gloves.
 3.2 Insulate yourself from work and ground.
 3.3 Disconnect input plug or power before working on machine.

4. Breathing cutting fumes can be hazardous to your health.
 4.1 Keep your head out of the fumes.
 4.2 Use forced ventilation or local exhaust to remove the fumes.
 4.3 Use ventilating fan to remove the fumes.

5. Arc rays can burn eyes and injure skin.
 5.1 Wear hat and safety glasses. Use ear protection and button shirt collar. Use welding helmet with correct shade of filter. Wear complete body protection.

6. Become trained and read the instructions before working on the machine or cutting.
 6.1 Wear a hat and safety glasses.
 6.2 Use ear protection.
 6.3 Wear complete body protection.

7. Do not remove or paint over (cover) warning labels.
Dans cette section :

- Identifier les consignes de sécurité...1a-2
- Suivre les instructions de sécurité ..1a-2
- Danger Avertissement Précaution ..1a-2
- Le coupage peut provoquer un incendie ou une explosion ...1a-2
 - Prévention des incendies, Prévention des explosions ...1a-2
 - Risque d’explosion argon-hydrogène et méthane..1a-2
 - Détonation de l’hydrogène lors du coupage de l’aluminium..1a-2
- Les chocs électriques peuvent être fatals..1a-3
 - Prévention des chocs électriques ...1a-3
- Le coupage peut produire des vapeurs toxiques..1a-3
- L’arc plasma peut provoquer des blessures ou des brûlures ...1a-4
 - Torches à allumage instantané ..1a-4
- Les rayons de l’arc peuvent brûler les yeux et la peau..1a-4
 - Protection des yeux, Protection de la peau, Zone de coupage ..1a-4
- Mise à la masse et à la terre..1a-4
 - Câble de retour, Table de travail, Alimentation ..1a-4
- Sécurité des bouteilles de gaz comprimé ..1a-5
- Les bouteilles de gaz comprimé peuvent exploser en cas de dommages1a-5
- Le bruit peut provoquer des problèmes auditifs ..1a-5
- Pacemakers et prothèses auditives ..1a-5
- Un arc plasma peut endommager les tuyaux gelés ..1a-5
- Étiquette de sécurité..1a-6
IDENTIFIER LES CONSIGNES DE SÉCURITÉ
Les symboles indiqués dans cette section sont utilisés pour identifier les risques éventuels. Si vous trouvez un symbole de sécurité, que ce soit dans ce manuel ou sur l’équipement, soyez conscient des risques de blessures et suivez les instructions correspondantes afin d’éviter ces risques.

SUIVRE LES INSTRUCTIONS DE SÉCURITÉ
Lire attentivement toutes les consignes de sécurité dans le présent manuel et sur les étiquettes de sécurité se trouvant sur la machine.

- Les étiquettes de sécurité doivent rester lisibles. Remplacer immédiatement les étiquettes manquantes ou abîmées.
- Apprendre à faire fonctionner la machine et à utiliser correctement les commandes. Ne laisser personne utiliser la machine sans connaître son fonctionnement.
- Garder la machine en bon état. Des modifications non autorisées sur la machine peuvent engendrer des problèmes de sécurité et raccourcir la durée d’utilisation de l’équipement.

DANGER AVERTISSEMENT PRÉCAUTION
Les signaux DANGER ou AVERTISSEMENT sont utilisés avec un symbole de sécurité, DANGER correspondant aux risques les plus sérieux.

- Les étiquettes de sécurité DANGER et AVERTISSEMENT sont situées sur la machine pour signaler certains dangers spécifiques.
- Les messages d’AVERTISSEMENT précèdent les instructions d’utilisation expliquées dans ce manuel et signalent les risques de blessures ou de mort au cas où ces instructions ne seraient pas suivies correctement.
- Les messages de PRÉCAUTION précèdent les instructions d’utilisation contenues dans ce manuel et signalent que le matériel risque d’être endommagé si les instructions ne sont pas suivies correctement.

LE COUPAGE PEUT PROVOQUER UN INCENDIE OU UNE EXPLOSION

Prévention des incendies
- Avant de commencer, s’assurer que la zone de coupage ne présente aucun danger. Conserver un extincteur à proximité.
- Éloigner toute matière inflammable à une distance d’au moins 10 m du poste de coupage.
- Tremper le métal chaud ou le laisser refroidir avant de le manipuler ou avant de le mettre en contact avec des matériaux combustibles.
- Ne jamais couper des récipients pouvant contenir des matières inflammables avant de les avoir vidés et nettoyés correctement.
- Aérer toute atmosphère potentiellement inflammable avant d’utiliser un système plasma.
- Lors de l’utilisation d’oxygène comme gaz plasma, un système de ventilation par aspiration est nécessaire.

Prévention des explosions
- Ne pas couper en présence de poussière ou de vapeurs.
- Ne pas couper de bouteilles, de tuyaux ou autres récipients fermés et pressurisés.
- Ne pas couper de récipients contenant des matières combustibles.

AVERTISSEMENT
Risque d’explosion argon-hydrogène et méthane

AVERTISSEMENT
Détonation de l’hydrogène lors du coupage de l’aluminium
- Lors du coupage de l’aluminium sous l’eau, ou si l’eau touche la partie inférieure de la pièce d’aluminium, de l’hydrogène libre peut s’accumuler sous la pièce à couper et détonner lors du coupage plasma.
- Installer un collecteur d’aération au fond de la table à eau afin d’éliminer les risques de détonation de l’hydrogène. Se référer à l’annexe du manuel pour plus de renseignements sur les collecteurs d’aération.
SÉCURITÉ

LES CHOCS ÉLECTRIQUES PEUVENT ÊTRE FATAUX

Toucher une pièce électrique sous tension peut provoquer un choc électrique fatal ou des brûlures graves.

- La mise en fonctionnement du système plasma ferme un circuit électrique entre la torche et la pièce à couper. La pièce à couper et tout autre élément en contact avec cette pièce font partie du circuit électrique.
- Ne jamais toucher le corps de la torche, la pièce à couper ou l'eau de la table à eau pendant le fonctionnement du système plasma.

Prévention des chocs électriques

Tous les systèmes plasma Hypertherm utilisent des hautes tensions pour le coupage (souvent de 200 à 400 V). On doit prendre les précautions suivantes quand on utilise le système plasma :

- Porter des bottes et des gants isolants et garder le corps et les vêtements au sec.
- Ne pas se tenir, s'asseoir ou se coucher sur une surface mouillée, ni la toucher quand on utilise le système plasma.
- S'isoler de la surface de travail et du sol en utilisant des tapis isolants secs ou des couvertures assez grandes pour éviter tout contact physique avec le travail ou le sol. S'il s'avère nécessaire de travailler dans ou près d'un endroit humide, procéder avec une extrême prudence.
- Installer un sectionneur avec fusibles appropriés, à proximité de la source de courant. Ce dispositif permet à l'opérateur d'arrêter rapidement la source de courant en cas d'urgence.
- En cas d'utilisation d'une table à eau, s'assurer que cette dernière est correctement mise à la terre.

Un câble dénudé peut tuer.

- Installer et mettre à la terre l'équipement selon les instructions du présent manuel et conformément aux codes électriques locaux et nationaux.
- Inspecter fréquemment le cordon d'alimentation primaire pour s'assurer qu'il n'est ni endommagé, ni fendu. Remplacer immédiatement un cordon endommagé.
- Inspecter et remplacer les câbles de la torche qui sont usés ou endommagés.
- Ne pas saisir la pièce à couper ni les chutes lors du coupage. Laisser la pièce à couper en place ou sur la table de travail, le câble de retour connecté lors du coupage.
- Avant de vérifier, de nettoyer ou de remplacer les pièces de la torche, couper l'alimentation ou débrancher la prise de courant.
- Ne jamais contourner ou court-circuiter les verrouillages de sécurité.
- Avant d'enlever le capot du système ou de la source de courant, couper l'alimentation électrique. Attendre ensuite 5 minutes pour que les condensateurs se déchargent.
- Ne jamais faire fonctionner le système plasma sans que les capots de la source de courant ne soient en place. Les raccords exposés de la source de courant sont extrêmement dangereux.
- Lors de l'installation des connexions, attacher tout d'abord la prise de terre appropriée.
- Chaque système plasma Hypertherm est conçu pour être utilisé uniquement avec des torches Hypertherm spécifiques. Ne pas utiliser des torches inappropriées qui pourraient surchauffer et présenter des risques pour la sécurité.

LE COUPAGE PEUT PRODUIRE DES VAPEURS TOXIQUES

Le coupage peut produire des vapeurs et des gaz toxiques qui réduisent le niveau d’oxygène dans l’air et peuvent provoquer des blessures, voire la mort.

- Conserver le poste de coupage bien aéré ou utiliser un masque respiratoire homologué.
- Ne pas procéder au coupage près d’endroits où s’effectuent le dégraissage, le nettoyage ou la vaporisation. Certains solvants chlorés se décomposent sous l’effet des rayons ultraviolets et forment du phosgène.
- Ne pas couper des métaux peints ou contenant des matières toxiques comme le zinc (galvanisé), le plomb, le cadmium ou le béryllium, à moins que la zone de travail soit très bien ventilée et que l'opérateur porte un masque respiratoire. Les revêtements et métaux contenant ces matières peuvent produire des vapeurs toxiques lors du coupage.
- Ne jamais couper de récipients pouvant contenir des matières inflammables avant de les avoir vidés et nettoyés correctement.
- Quand on utilise ce produit pour le soudage ou le coupage, il dégage des fumées et des gaz qui contiennent des produits chimiques qui, selon l’État de Californie, provoquent des anomalies congénitales et, dans certains cas, le cancer.
SÉCURITÉ

L’ARC PLASMA PEUT PROVOQUER DES BLESSURES OU DES BRÛLURES

L’arc plasma coupe facilement les gants et la peau.
- Rester éloigné de l’extrémité de la torche.
- Ne pas tenir de métal près de la trajectoire de coupe.
- Ne jamais pointer la torche vers soi ou d’autres personnes.

L’arc plasma s’allume immédiatement après que la torche soit mise en marche.

LES RAYONS DE L’ARC PEUVENT BRÛLER LES YEUX ET LA PEAU

Protection des yeux Les rayons de l’arc plasma produisent de puissants rayons visibles ou invisibles (ultraviolets et infrarouges) qui peuvent brûler les yeux et la peau.
- Utiliser des lunettes de sécurité conformément aux codes locaux ou nationaux en vigueur.
- Porter des lunettes de protection (lunettes ou masque muni d’écrans latéraux et encore masque de soudure) avec des verres teintés appropriés pour protéger les yeux des rayons ultraviolets et infrarouges de l’arc.

<table>
<thead>
<tr>
<th>Courant de l’arc</th>
<th>Puissance des verres teintés AWS (É.-U.)</th>
<th>ISO 4850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jusqu’à 100 A</td>
<td>N° 8</td>
<td>N° 11</td>
</tr>
<tr>
<td>100-200 A</td>
<td>N° 10</td>
<td>N° 11-12</td>
</tr>
<tr>
<td>200-400 A</td>
<td>N° 12</td>
<td>N° 13</td>
</tr>
<tr>
<td>Plus de 400 A</td>
<td>N° 14</td>
<td>N° 14</td>
</tr>
</tbody>
</table>

Protection de la peau Porter des vêtements de sécurité pour se protéger contre les brûlures que peuvent causer les rayons ultraviolets, les étincelles et le métal brûlant :
- Gants à crispin, chaussures et casque de sécurité.
- Vêtements ignifuges couvrant toutes les parties exposées du corps.
- Pantalon sans revers pour éviter que des étincelles ou des scories puissent s’y loger.
- Avant le coupage, retirer de ses poches tout objet combustible comme les briquets au butane ou les allumettes.

Zone de coupage Préparer la zone de coupage afin de réduire la réverbération et la transmission de la lumière ultraviolette :
- Peindre les murs et autres surfaces de couleur sombre pour réduire la réflexion de la lumière.
- Utiliser des écrans et autres dispositifs de protection afin de protéger les autres personnes de la lumière et de la réverbération.
- Prévenir les autres personnes de ne pas regarder l’arc. Utiliser des affiches ou des panneaux.

MISE À LA MASSE ET À LA TERRE

Câble de retour Bien fixer le câble de retour (ou de masse) à la pièce à couper ou à la table de travail de façon à assurer un bon contact métal-métal. Ne pas fixer le câble de retour à la partie de la pièce qui doit se détacher.

Table de travail Raccorder la table de travail à la terre, conformément aux codes de sécurité locaux ou nationaux appropriés.

Alimentation
- S’assurer que le fil de terre du cordon d’alimentation est connecté à la terre dans le coffret du sectionneur.
- Si l’est nécessaire de brancher le cordon d’alimentation à la source de courant lors de l’installation du système, s’assurer que le fil de terre est correctement branché.
- Placer tout d’abord le fil de terre du cordon d’alimentation sur le plot de mise à la terre puis placer les autres fils de terre par-dessus. Bien serrer l’écrou de retenue.
- S’assurer que toutes les connexions sont bien serrées pour éviter la surchauffe.
SÉCURITÉ DES BOUTEILLES DE GAZ COMPRIMÉ

- Ne jamais lubrifier les robinets des bouteilles ou les régulateurs avec de l’huile ou de la graisse.
- Utiliser uniquement les bouteilles, régulateurs, tuyaux et accessoires appropriés et conçus pour chaque application spécifique.
- Entretenir l’équipement et les pièces d’équipement à gaz comprimé afin de les garder en bon état.
- Étiqueter et coder avec des couleurs tous les tuyaux de gaz afin d’identifier le type de gaz contenu dans chaque tuyau. Se référer aux codes locaux ou nationaux en vigueur.

LES BOUTEILLES DE GAZ COMPRIMÉ PEUVENT EXPLOSER EN CAS DE DOMMAGES

Les bouteilles de gaz contiennent du gaz à haute pression. Si une bouteille est endommagée, elle peut exploser.
- Manipuler et utiliser les bouteilles de gaz comprimé conformément aux codes locaux ou nationaux.
- Ne jamais utiliser une bouteille qui n’est pas placée à la verticale et bien assujettie.
- Le capuchon de protection doit être placé sur le robinet sauf si la bouteille est en cours d’utilisation ou connectée pour utilisation.
- Éviter à tout prix le contact électrique entre l’arc plasma et une bouteille.
- Ne jamais exposer des bouteilles à une chaleur excessive, aux étincelles, aux scories ou aux flammes nues.
- Ne jamais utiliser des marteaux, des clés ou d’autres outils pour débloquer le robinet des bouteilles.

LE BRUIT PEUT PROVOQUER DES PROBLÈMES AUDITIFS

Une exposition prolongée au bruit du coupage ou du gougeage peut provoquer des problèmes auditifs.
- Utiliser un casque de protection homologué lors de l’utilisation du système plasma.
- Prévenir les personnes aux alentours des risques encourus en cas d’exposition au bruit.

PACEMAKERS ET PROTHÈSES AUDITIVES

Les champs magnétiques produits par les courants à haute tension peuvent affecter le fonctionnement des prothèses auditives et des pacemakers. Les personnes portant ce type d’appareil doivent consulter un médecin avant de s’approcher d’un lieu où s’effectue le coupage ou le gougeage plasma.

Pour réduire les risques associés aux champs magnétiques :
- Garder loin de soi et du même côté du corps le câble de retour et le faisceau de la torche.
- Faire passer le faisceau de la torche le plus près possible du câble de retour.
- Ne pas s’enrouler le faisceau de la torche ou le câble de retour autour du corps.
- Se tenir le plus loin possible de la source de courant.

UN ARC PLASMA PEUT ENDOMMAGER LES TUYAUX GELÉS

Les tuyaux gelés peuvent être endommagés ou éclater si l’on essaie de les dégeler avec une torche plasma.
Étiquette de sécurité
Cette étiquette est affichée sur la source de courant. Il est important que l’utilisateur et le technicien de maintenance comprennent la signification des symboles de sécurité. Les numéros de la liste correspondent aux numéros des images.

1. Les étincelles produites par le coupage peuvent provoquer une explosion ou un incendie.
1.1 Pendant le coupage, éloigner toute matière inflammable.
1.2 Conserver un extincteur à proximité et s’assurer qu’une personne soit prête à l’utiliser.
1.3 Ne jamais couper de récipients fermés.
2. L’arc plasma peut provoquer des blessures et des brûlures.
2.1 Couper l’alimentation avant de démonter la torche.
2.2 Ne pas tenir la surface à couper près de la trajectoire de coupe.
2.3 Porter des vêtements de protection couvrant tout le corps.
3. Un choc électrique causé par la torche ou les câbles peut être fatal. Se protéger contre les risques de chocs électriques.
3.1 Porter des gants isolants. Ne pas porter de gants mouillés ou abîmés.
3.2 S’isoler de la surface de travail et du sol.
3.3 Débrancher la prise ou la source de courant avant de manipuler l’équipement.
4. L’inhalation des vapeurs produites par le coupage peut être dangereuse pour la santé.
4.1 Garder le visage à l’écart des vapeurs.
4.2 Utiliser un système de ventilation par aspiration ou d’échappement localisé pour dissiper les vapeurs.
4.3 Utiliser un ventilateur pour dissiper les vapeurs.
5. Les rayons de l’arc peuvent brûler les yeux et provoquer des lésions de la peau.
6. Se former à la technique du coupage et lire les instructions avant de manipuler l’équipement ou de procéder au coupage.
7. Ne pas retirer ou peindre (recouvrir) les étiquettes de sécurité.
Section 2

SPECIFICATIONS

In this section:

Specifications – Power Supply ... 2-2
 Power Connection .. 2-3
 Engine Drives .. 2-3
 Duty Cycle ... 2-4
 Power Supply – Dimensions and Weight ... 2-4
Specifications – T100 Torches .. 2-5
 Torch Dimensions .. 2-6
 Symbols and Markings ... 2-7
Specifications – Power Supply

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Open Circuit Voltage (U_0)</td>
<td>300 VDC</td>
</tr>
<tr>
<td>Output Characteristic*</td>
<td>Drooping</td>
</tr>
<tr>
<td>*Defined as a plot of output voltage versus output current</td>
<td></td>
</tr>
<tr>
<td>Rated Output Current (I_2)</td>
<td>30A – 100A</td>
</tr>
<tr>
<td>Hypertherm Standard Rated Output Voltage (U_2)</td>
<td>160 VDC</td>
</tr>
<tr>
<td>Duty Cycle (X^*) at 104°F (40°C) at rated conditions (U_1, I_1, U_2, I_2)</td>
<td></td>
</tr>
<tr>
<td>U_1 – Volts AC rms</td>
<td>X</td>
</tr>
<tr>
<td>200-208 VAC 3PH</td>
<td>60%</td>
</tr>
<tr>
<td>230-240 VAC 3PH</td>
<td>70%</td>
</tr>
<tr>
<td>380-415 VAC 3PH</td>
<td>80%</td>
</tr>
<tr>
<td>480 VAC 3PH</td>
<td>80%</td>
</tr>
<tr>
<td>600 VAC 3PH</td>
<td>80%</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>14°F to 104°F (-10°C to 40°C)</td>
</tr>
<tr>
<td>Rated AC phases (PH) and line frequency (Hz)</td>
<td>PH Hz</td>
</tr>
<tr>
<td>Standard and CE Model</td>
<td>3 50-60</td>
</tr>
<tr>
<td>Rated Input Voltage (U_1), rated Input Current (I_1) and $I_{1\text{eff}}^*$ at rated Output U_2 and I_2 – cutting only.</td>
<td></td>
</tr>
<tr>
<td>U_1 – Volts AC rms</td>
<td>I_1-Amps rms</td>
</tr>
<tr>
<td>200-208 VAC 3PH</td>
<td>53</td>
</tr>
<tr>
<td>230-240 VAC 3PH</td>
<td>46</td>
</tr>
<tr>
<td>380-415 VAC 3PH</td>
<td>27</td>
</tr>
<tr>
<td>480 VAC 3PH</td>
<td>22</td>
</tr>
<tr>
<td>600 VAC 3PH</td>
<td>21</td>
</tr>
<tr>
<td>Power Factor</td>
<td>U_1 – Volts AC rms</td>
</tr>
<tr>
<td>200-208 VAC 3PH</td>
<td>0.94</td>
</tr>
<tr>
<td>230-240 VAC 3PH</td>
<td>0.94</td>
</tr>
<tr>
<td>380-415 VAC 3PH</td>
<td>0.94</td>
</tr>
<tr>
<td>480 VAC 3PH</td>
<td>0.94</td>
</tr>
<tr>
<td>600 VAC 3PH</td>
<td>0.78</td>
</tr>
<tr>
<td>Rsce – Short Circuit Ratio—CE Model only</td>
<td>U_1 – Volts AC rms, 3PH</td>
</tr>
<tr>
<td>400 VAC</td>
<td>191</td>
</tr>
<tr>
<td>230 VAC</td>
<td>142</td>
</tr>
<tr>
<td>This equipment conforms to IEC 61000-3-12, provided that Rsce min = 191 at 400VAC 3PH and 142 at 230 VAC 3PH.</td>
<td></td>
</tr>
<tr>
<td>IP code—Degree of protection provided by enclosure</td>
<td>IP23CS*</td>
</tr>
<tr>
<td>IP – “International Protection”</td>
<td></td>
</tr>
<tr>
<td>2 – No ingress foreign objects ≥12.5mm (0.5 in)</td>
<td></td>
</tr>
<tr>
<td>3 – No harmful ingress spraying water</td>
<td></td>
</tr>
<tr>
<td>C – AC line circuits protected against ingress of tool ≥2.5 mm dia. x 100 mm long (0.1 inch x 4.0 inch)</td>
<td></td>
</tr>
<tr>
<td>S – fan stationary during water test</td>
<td></td>
</tr>
<tr>
<td>*WARNING: DO NOT OPERATE IN RAIN</td>
<td></td>
</tr>
<tr>
<td>Toppling, Tilting (with or without wheel kit)</td>
<td>Up to 15° incline.</td>
</tr>
<tr>
<td>Gas Type</td>
<td>Air Nitrogen</td>
</tr>
<tr>
<td>Gas Quality</td>
<td>Clean, moisture-free, oil-free</td>
</tr>
<tr>
<td>Gas Inlet Pressure and Flow</td>
<td>90-120 psig (6.2-8.3 bar) 550 scfh/9.2 scfm (260 l/min)</td>
</tr>
</tbody>
</table>
Power Connection

The Powermax1650 is a universal power supply that configures itself to operate with AC voltages from 200 to 6003PH (230-400 3PH for CE model). Use a line disconnect switch for each power supply so that the operator can turn off the power supply quickly in an emergency. Locate the switch so it is easily accessible to the operator. The interrupt level of the switch must be equal to or exceed the continuous rating of the fuses. Use slow-blow fuses rated per local and national electrical codes.

<table>
<thead>
<tr>
<th>Standard Model</th>
<th>Three Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>200-208 230-240 400 480 600</td>
</tr>
<tr>
<td>Input Current at 16kw Output</td>
<td>53 46 27 22 21</td>
</tr>
<tr>
<td>Input Current during Arc Stretch</td>
<td>75 72 42 34 33</td>
</tr>
<tr>
<td>Recommended Fuse</td>
<td>80 80 50 40 40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CE Model</th>
<th>Three Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>230 400</td>
</tr>
<tr>
<td>Input Current at 16kw Output</td>
<td>46 27</td>
</tr>
<tr>
<td>Input Current during Arc Stretch</td>
<td>72 42</td>
</tr>
<tr>
<td>Recommended Fuse</td>
<td>80 50</td>
</tr>
</tbody>
</table>

Engine Drives

When using an engine drive to power the Powermax1650:

- The engine drive must be dedicated to powering the plasma cutting system.
- Engine drive operation:
 1. Set the engine drive output to 3 phase AC.
 2. Plug the Powermax1650 power cord into the power outlet.
 3. Set the engine drive to the maximum output (see table below).
- Use unshielded consumables if you experience difficulty cutting thicker material (non-CE systems only).

<table>
<thead>
<tr>
<th>Engine Drive Rating</th>
<th>PMX1650 Output Current</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 kw</td>
<td>100 A</td>
<td>Full Arc Stretch</td>
</tr>
<tr>
<td>22.5 kw</td>
<td>100 A 75 A</td>
<td>Limited Arc Stretch Full Arc Stretch</td>
</tr>
<tr>
<td>15 kw</td>
<td>75 A 50 A</td>
<td>Limited Arc Stretch Full Arc Stretch</td>
</tr>
</tbody>
</table>
Duty Cycle

Duty cycle is the percentage of time, during a 10 minute period, that the power supply can cut continuously. The diagram below depicts an 80% duty cycle.

Note: Refer to *Specifications – Power Supply* to determine the duty cycle that corresponds with the input power.

![Duty Cycle Diagram](image)

Power Supply – Dimensions and Weight

- Weight of power supply without torch: 124 lb (56.2 kg)
- Dimensions: 26.4 in (671 mm) wide, 16.8 in (427 mm) deep, 25.8 in (655 mm) high
Specifications – T100 Torches

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting Capacity At 100 Amps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended capacity</td>
<td>1-1/4 inch (32 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum capacity</td>
<td>1-1/2 inch (38 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severance capacity</td>
<td>1-3/4 inch (45 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gouging Capability</td>
<td>(metal removal rate on mild steel)</td>
<td>22.8 pounds (10.4 kg) hour</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T100</td>
<td>7.2 pounds (3.3 kg) with 25 ft (7.5 m) lead</td>
<td>13.9 pounds (6.3 kg) with 50 ft (15 m) lead</td>
<td></td>
</tr>
<tr>
<td>T100M</td>
<td>8.3 pounds (3.8 kg) with 25 ft (7.5 m) lead</td>
<td>11.0 pounds (5.0 kg) with 35 ft (10.7 m) lead</td>
<td>15.0 pounds (6.8 kg) with 50 ft (15 m) lead</td>
</tr>
</tbody>
</table>
Torch Dimensions

T100 Hand Torch Dimensions

T100M Machine Torch Dimensions

32 pitch .125" (3.2 mm) width
Symbols and Markings

S MARK

The **S** mark indicates that the power supply and torch are suitable for use in environments with increased hazard of electrical shock. The hand torches **must** have shielded consumable parts to maintain **S** mark compliance.

IEC Symbols Used

The following symbols may appear on the power supply data plate, control labels and switches.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Current (DC)</td>
<td>![Direct Current (DC)]</td>
</tr>
<tr>
<td>Alternating current (AC)</td>
<td>![Alternating current (AC)]</td>
</tr>
<tr>
<td>Plasma torch cutting and gouging</td>
<td>![Plasma torch cutting and gouging]</td>
</tr>
<tr>
<td>AC input power connection</td>
<td>![AC input power connection]</td>
</tr>
<tr>
<td>The terminal for the external protective (earth) conductor</td>
<td>![The terminal for the external protective (earth) conductor]</td>
</tr>
<tr>
<td>An inverter-based power source</td>
<td>![An inverter-based power source]</td>
</tr>
<tr>
<td>Plasma torch in the TEST position (cooling and cutting gas exiting nozzle)</td>
<td>![Plasma torch in the TEST position]</td>
</tr>
<tr>
<td>Power is on</td>
<td>![Power is on]</td>
</tr>
<tr>
<td>Power is off</td>
<td>![Power is off]</td>
</tr>
<tr>
<td>Volt/amp curve, "drooping" characteristic</td>
<td>![Volt/amp curve, "drooping" characteristic]</td>
</tr>
</tbody>
</table>
Section 3

MAINTENANCE

In this section:

Controls and Indicators3-2
Theory of Operation.. 3-3
 General ...3-3
 Functional Description... 3-3
Sequence of Operation3-4
Troubleshooting .. 3-5
 Test Equipment ...3-5
 Troubleshooting Procedures and Sequence ... 3-5
 Visual Inspection – External .. 3-5
 Visual Inspection – Internal .. 3-6
Resistance Checks ...3-7
Troubleshooting Guide .. 3-9
Voltage Checks .. 3-14
Component Replacement .. 3-20
 Power Cord Replacement ... 3-20
 Torch Installation ... 3-21
 Filter Element Replacement .. 3-23
 Work Cable Replacement ... 3-24
 Capacitor Replacement ... 3-25
 Heat Sink Component Replacement .. 3-26
Controls and Indicators

Indicator LEDs

Green Power ON LED
When illuminated, indicates that power is applied to system and power switch is ON (I).

Gas Pressure LED
Yellow: When flashing, indicates that the gas pressure is below 65 psig (4.5 bar) for cutting, or 40 psig (2.8 bar) for gouging.
Green: When illuminated, indicates acceptable gas pressure for torch operation.

Yellow Torch Cap LED
When illuminated, indicates that the Retaining Cap is loose or not installed.
NOTE: Condition must be corrected and power turned OFF then ON to clear LED.

Yellow Temp LED
When illuminated, indicates that the power supply temperature has exceeded its operating limit.

Red Fault LED
When illuminated, indicates that a fault condition exists, which prevents system operation. A yellow LED should also be illuminated that identifies the type of fault.

Yellow Line Voltage LED
When illuminated, indicates that line voltage is below 170 VAC, above 680 VAC, or missing a phase.
Theory of Operation

General

Refer to Functional Description, Sequence of Operation and the system wiring diagram in Section 6.

Functional Description

AC power enters the system through the power switch S1 to the input diode bridge D24. The voltage from the diode bridge supplies the Power Factor Correction (PFC) Boost Converter which provides a 750 VDC bus voltage. The bus voltage then supplies the inverter and the flyback system power supply (DC to DC converter) on the power board PCB2. The power board provides noise suppression and spike protection. A "soft start" is implemented via the power board resistor and relay K1.

The PFC Boost Converter consists of an isolated gate bipolar transistor (IGBT) Q14, choke and control circuit. It provides a 750 VDC bus voltage when input AC voltage is between 170 and 540 VAC. When the input voltage is above 540 VAC the bus voltage will rise to Vin*√2.

The inverter consists of an IGBT Q13, the power transformer T2, a current sense transformer, and sections of the power board. The inverter operates as a pulse-width, modulator-controlled bridge circuit, and is rectified by the output diode.

The output circuitry consists of 2 current transfer sensors located on the power board, the pilot arc IGBT Q15 and the output choke.

The control board’s microprocessor monitors and regulates system operation and safety circuits. The current is set to the desired value by adjusting the current adjustment knob. The system compares the set point to the output current by monitoring the current sensor and adjusting the pulse width output of the inverter IGBT Q13.

The control board PCB3 includes a pilot arc control switch, allowing the operator to turn the pilot arc ON (useful when cutting expanded metal), OFF (for maximum life of consumables), or increase the pilot arc to 30A (useful for gouging or non-transferred-arc cutting).
Sequence of Operation

- Connect gas supply to filter on power unit.
- Connect work lead to work piece.
- Apply power at line voltage disconnect box.
- Set ON/OFF switch S1 to ON (I)

- Power ON lamp illuminates and Gas Pressure LED illuminates green, indicating system is ready for operation.
- Fault LEDs should not be illuminated (see Troubleshooting for more information)

- Turn current adjustment knob counterclockwise to gas test position.
- Check air pressure setting.

Gas solenoid valve V1 opens to purge system and to allow setting of pressure.

- Set gas pressure (see Setup section in Operator Manual).
- Select desired cutting amps with current adjustment knob.

- Gas solenoid valve V1 closes.
- Gas flow stops.

Set power switch S1 to OFF (0).

- Gas solenoid valve V1 closes.
- Gas flow stops.
- Consumables reseat.

- Arc extinguishes.
- Post flow continues for 30 seconds.

- Arc transfers to plate.
- Move torch to make cut.
- Work piece falls away after cut.
- Release plasma start switch on hand torch or remote start switch for machine torch.

- Inverter starts.
- Current flows through torch with nozzle and electrode shorted.
- Gas solenoid valve V1 opens.
- Gas flow starts.
- Torch “blows back” - nozzle and electrode separate.
- Pilot arc starts.

- Position torch on work piece.
- Depress plasma start switch on hand torch or remote start switch for machine torch.

Power circuits are ready.
TROUBLESHOOTING

The complexity of the circuits requires that service technicians have a working knowledge of inverter power supply theory. In addition to being technically qualified, technicians must perform all testing with safety in mind.

If questions or problems arise during servicing, call the nearest Hypertherm Technical Services Department listed in the front of this manual.

Test Equipment

- Multimeter

Troubleshooting Procedures and Sequence

When performing the troubleshooting procedures,

- Refer to Section 6 for the system wiring diagram;
- Refer to Section 4 to locate power supply components;
- Refer to Section 5 for torch components.

After the problem has been located and repaired, refer to the Sequence of Operation flow diagram in this section to test the power supply for proper operation.

Visual Inspection – External

1. Inspect the outside of the power supply for damage to the cover and external components.

2. Inspect the torch and the torch lead for damage.
WARNING

ELECTRIC SHOCK CAN KILL
- Turn off the power and remove the input power plug from its receptacle before removing the cover from the power supply. If the power supply is directly connected to a line disconnect box, switch the line disconnect to OFF (O). In the U.S., use a "lock-out / tag-out" procedure until the service or maintenance work is complete. In other countries, follow appropriate national or local safety procedures.
- Do not touch live electrical parts! If power is required for servicing, use extreme caution when working near live electrical circuits. Dangerous voltages exist inside the power supply that can cause serious injury or death.
- Do not attempt to repair the power board or control board. Do not cut away or remove any protective conformal coating from either board. To do so will risk a short circuit between the AC input circuit and the output circuit and may result in serious injury or death.

HOT PARTS CAN CAUSE SEVERE BURNS
- Allow the power supply to cool before servicing.

MOVING BLADES CAN CAUSE INJURY
- Keep hands away from moving parts.

STATIC ELECTRICITY CAN DAMAGE CIRCUIT BOARDS
- Put on a grounded wrist strap before handling PC boards.

Visual Inspection – Internal

1. Set the ON/OFF switch S1 to O (OFF), unplug the power cord and disconnect the gas supply.

2. Remove the cover of the power supply by removing the 18 securing screws.

3. Inspect the inside of the power supply, especially on the side with the power board. Look for broken or loose wiring connections, burn and char marks, damaged components, etc. Repair or replace as necessary.
Resistance Checks

All resistance values must be taken with the power cord disconnected and all internal power supply wires attached. Perform Visual Inspection – Internal before continuing in this section.

- If resistance values are not close to the values given in this section, isolate the problem by removing wires attached to the resistance check points or component until the problem is found.

- After the problem has been located and repaired, refer to the *Sequence of Operation* flow diagram in this section to test the power unit for proper operation.

Resistance Check #1

1. With the power disconnected, set the ON/OFF switch S1 to ON.

2. Check resistance across input leads.

3. Check resistance from input leads to ground.

Note: All values are ±15%.
Resistance Check #2

- Remove the linkage bar as shown below.
- Check each diode (connection 1 and 3) with an ohm meter in diode test mode.
- Value should be open with meter leads in one direction and 0.1V to 1.0V with meter leads reversed.

Diode is shorted if value is less than 0.1V. Replace diode.
Diode is open if value is greater than 1.0V in both directions. Replace diode.

Note: Black marker on wire to lower diodes.
Troubleshooting Guide

WARNING

ELECTRIC SHOCK CAN KILL
• Use extreme caution when working near live electrical circuits. Dangerous voltages exist inside the power supply that can cause serious injury or death.
• See warnings on page 3-7 before proceeding.

If no problems were found during the initial resistance checks and the power supply still does not operate correctly, see the Troubleshooting Guide on the following pages.

Note: The Troubleshooting Guide provides most probable causes and solutions. Study the system wiring diagram and understand the theory of operation before troubleshooting. Before purchasing a major replacement component, verify the problem with Hypertherm Technical Service or the nearest Hypertherm repair facility.
<table>
<thead>
<tr>
<th>Problem</th>
<th>This May Mean</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn power switch ON and Power On LED does not illuminate</td>
<td>Insufficient voltage to control circuits or shorted power component</td>
<td>No voltage or improper voltage applied to unit</td>
<td>Verify incoming voltage is between 200-600 VAC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective power switch (S1)</td>
<td>Measure AC voltage at bottom terminals of switch. If no voltage, replace switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective filter board (PCB1)</td>
<td>CE System only: Measure AC voltage at input diode bridge. If no voltage or low voltage, replace filter board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective input diode bridge (D24)</td>
<td>Measure DC voltage on input diode bridge. Voltage at input diode bridge should be approximately Vin * √/2. If incorrect voltage or no voltage, replace input diode bridge.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective power board (PCB2) or IGBT module (Q14)</td>
<td>Bus voltage should be 750 VDC when input voltage is between 200-540 VAC. If voltage is incorrect, inspect power board and IGBT module for damage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective power board (PCB2) or control board (PCB3)</td>
<td>Disconnect power board J4 connector and measure for VDC on power board TP1: J4-Pin16 = 5 VDC, J4-Pin18 = 5 VDC with start switch depressed. If incorrect voltage or no voltage, replace power board. If voltage is correct, replace control board.</td>
</tr>
<tr>
<td>Red LED on power board (PCB2) illuminates when input voltage is between 200-540 VAC</td>
<td></td>
<td>Defective boost IGBT module (Q14) or power board (PCB2)</td>
<td>Replace boost IGBT (Q14) and inspect power board (PCB2) for damage.</td>
</tr>
<tr>
<td>Power LED illuminates and air flows from torch (torch trigger/start switch not pressed)</td>
<td></td>
<td>System is in gas test mode</td>
<td>Turn knob clockwise until above the 25 amp setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current adjustment knob is in gas test position</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solenoid valve (V1) stuck open</td>
<td>Disconnect J20 from power board (PCB2). If air flow continues, replace valve (V1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faulty valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defective power board (PCB2)</td>
<td>Disconnect J20 from power board (PCB2). If air flow stops, replace power board.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Constant voltage supplied to valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incoming gas pressure is too high</td>
<td>Set incoming gas pressure between 90 psi (6.1 bar) and 120 psi (8.3 bar).</td>
</tr>
<tr>
<td>Voltage LED illuminates</td>
<td></td>
<td>Voltage below proper operating limits or loss of phase</td>
<td>Verify incoming line voltage.</td>
</tr>
<tr>
<td>Air pressure LED blinks yellow</td>
<td></td>
<td>Insufficient air pressure</td>
<td>Connect air supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No air supplied to unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air pressure below operating requirement</td>
<td>Turn current adjustment knob to gas test and set pressure to 75 psi (5.2 bar) for cutting and 50 (3.4 bar) for gouging is required for system operation. Check that the inlet gas pressure is within setup specifications in section 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faulty pressure sensor assembly</td>
<td>With normal air supply (>90 psi) connected, measure R47 left to TP1 with a DC digital voltage meter. Voltage should be approximately 3.3V when regulator is set at 70 psi. Change regulator setting and verify that voltage also changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirty air filter element</td>
<td>Replace air filter element.</td>
</tr>
<tr>
<td>Condition</td>
<td>Description</td>
<td>Action</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Yellow cap sensing LED illuminates</td>
<td>Safety circuit not satisfied</td>
<td>Refer to consumable diagram for proper installation. Try new consumables.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over temp LED illuminates</td>
<td>Temperature sensors not satisfied</td>
<td>Allow unit to cool. Stay with duty cycle limits in manual.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exceeded duty cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fan not operating or improperly operating</td>
<td>Disconnect J2 and jump pins 1 and 2. Fan should operate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective heatsink temperature switch TP1 (check when system is cool, at least 15 min after use)</td>
<td>Remove J2 from power board (PCB2). Check temperature PCB (PCB4) by checking resistance on pins 1 and 2. If resistance is not between 3k-5k ohms, replace temperature sensor PCB (PCB4).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective power transformer (T2) temperature sensor TS2 (check when system is cool, at least 60 min after use)</td>
<td>Check transformer sensor (T2) by checking resistance on J21 pins 1 and 2 on wires. If greater than 15 k ohms, replace power transformer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start signal not being received by power supply. Start LED off on control board (PCB3).</td>
<td>Remove torch. Check J18 pins 10 and 12 violet and orange wires for continuity when torch trigger is depressed. If open circuit, inspect torch and lead assembly.</td>
<td></td>
</tr>
<tr>
<td>Power LED illuminates, all fault LEDs extinguished, but no air flow or firing of torch when torch switch is pressed</td>
<td>Damage to torch and lead assembly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exceeded duty cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overuse or improperly installed consumables</td>
<td>Replace consumables.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improper pressure setting</td>
<td>Turn current adjustment knob to test flow and set pressure regulator 75 psi (5.2 bar) for cutting and 50 psi (3.4 bar) for gouging.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power board failure, or damaged torch and lead assembly.</td>
<td>Verify fault: control board (PCB3) IF LED. IF Fault and IF LEDs are illuminated, replace power board. If IF LED is not illuminated, replace torch and lead assembly. NOTE: OCV is 300VDC but is only available for 100 msec. Measure at J15 and J16 using a Fluke 87 or equivalent digital multi-meter.</td>
<td></td>
</tr>
</tbody>
</table>

When pressing torch trigger/start switch, air flows from torch, but no arc

- Worn or bad consumables
- Overuse or improperly installed consumables
- Insufficient air flow
- Improper pressure setting
- No output from power board (PCB2)
- Power board failure, or damaged torch and lead assembly
<table>
<thead>
<tr>
<th>Issue</th>
<th>Worn consumables</th>
<th>Worn-out consumables</th>
<th>Replace consumables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper air pressure setting or low flow</td>
<td>Insufficient supply or air leak on supply line</td>
<td>Turn current adjust knob to test flow and set pressure regulator to 75 psi (5.2 bar) for cutting or 50 psi (3.4 bar) for gouging. If unable to adjust to proper setting, verify that inlet pressure is between 90 psi (6.1 bar) and 120 psi (8.3 bar).</td>
<td></td>
</tr>
<tr>
<td>Poor quality air</td>
<td>Moisture or contaminates in air supply</td>
<td>Add appropriate filtration and purge lines with nitrogen to flush out oil and moisture.</td>
<td></td>
</tr>
<tr>
<td>Insufficient input power</td>
<td>Undersized electrical supply installation:</td>
<td>Verify external electrical power is installed per specifications in section 2. Check input voltage while trying to fire torch. Voltage drop indicates undersized electrical supply installation.</td>
<td></td>
</tr>
<tr>
<td>Inverter fault or interlock</td>
<td>Power board (PCB2) failure</td>
<td>If the control board (PCB2) IF LED illuminates and one or more of the fault LEDs illuminate, then the fault is caused by the parameter monitored by the fault LED. If no fault LED is illuminated, replace power board.</td>
<td></td>
</tr>
<tr>
<td>Machine will not cut material (does not appear to be operating at full cutting power)</td>
<td>Inadequate ground</td>
<td>Poor work lead connection</td>
<td>Verify work lead is attached to workpiece and workpiece is free of rust, paint, etc.</td>
</tr>
<tr>
<td></td>
<td>Damaged work lead</td>
<td>Check continuity of work lead. Replace or repair as required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective pilot arc IGBT (Q15)</td>
<td>Turn power OFF, remove consumables, check resistance between plunger and work piece. If resistance is greater than 8k ohms. Inspect work lead. Check pilot arc IGBT resistance between two screws at Q15 on power board. If resistance is less than 5k ohms, replace pilot arc IGBT.</td>
<td></td>
</tr>
<tr>
<td>Low output from power supply</td>
<td>Current adjustment set too low</td>
<td>Verify current adjust knob is at proper setting (turn to max, full clockwise).</td>
<td></td>
</tr>
<tr>
<td>Losing pilot arc when going off plate while in continuous pilot mode</td>
<td>Continuous pilot arc does not work.</td>
<td>Replace power board. Can confirm power output by measuring with a DC current clamp meter on work.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mode switch set wrong</td>
<td>Set mode switch to correct position.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faulty control board (PCB3)</td>
<td>Replace control board.</td>
<td></td>
</tr>
</tbody>
</table>
Problem

<table>
<thead>
<tr>
<th>Problem</th>
<th>This May Mean</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | Start LED on control board (PCB3) and Fault lamp are illuminated | Continuous start signal | Shorted start wires or depressed start trigger switch
 Checking start wires (blue and orange wires in torch) for short
 Receiving start signal from CNC
 Check CNC cable for start signal (Machine interface pins 3 and 4) |
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | Start and XFR LEDs on control board (PCB3) | Arc transfer | Normal operation | N/A |
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | SDF LED on control board (PCB3) and Fault lamp are illuminated | Self diagnostic failure | Microprocessor failure | Replace control board (PCB3). If SDF LED persists replace power board (PCB2) |
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | Start and IF LEDs on control board (PCB3) and Fault lamp are illuminated | Inverter interlock | No current from inverter, power board (PCB2), control board (PCB3), or IGBTs |
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | Start and TSO LEDs on control board (PCB3) | Torch stuck in open position | Torch plunger stuck, consumables are worn, or defective Pilot Arc IGBT
 See *Resistance Check #3*, in this section. |
| ● **START**
 ○
 ○
 ○
 ○
 ○
 ○
 ○ | Start and SP LEDs on control board (PCB3) and Fault lamp are illuminated | LED is for future use | N/A | N/A |
Voltage Checks

Voltage Check #1
- Check input voltage to the input diode bridge.
- The AC voltage between any 2 input wires should equal the line voltage.

Note: All values are ±15%.
Voltage Check #2

- Check output voltage of the input diode bridge.
- Output VDC = Line Voltage * 1.414

Note: All values are ±15%.
Voltage Check #3

- Check voltage across IGBT module (Q14).

Note: All values are ±15%.
Voltage Check #4
• Check voltage across IGBT module (Q13).

Note: All values are ±15%.
Voltage Check #5

• Check voltage across power supply capacitors.

Note: All values are ±15%.
Resistance Check #3
• Troubleshoot illuminated Torch Stuck Open LED on control board PCB3.

1. Check resistance between Q15 and J17. The value should be < 1 Ω.
 If not, check torch leads, torch head, and consumables.

2. Check resistance between Q15 and J17 with system in Gas Test mode. The value should be > 1 MΩ.
 If not, verify electrode and torch plunger move freely.

3. Pilot arc shorted – check resistance between Q15 and J17 with torch removed. If value is < 1 KΩ replace Pilot Arc IGBT.

4. Pilot arc open – use a jumper wire to jump J14 to Q15. Then attempt to fire the torch. If the torch fires replace the Pilot Arc IGBT.

Note: All values are ±15%.
WARNING

ELECTRIC SHOCK CAN KILL

- Use extreme caution when working near live electrical circuits. Dangerous voltages exist inside the power supply that can cause serious injury or death.
- See warnings on page 3-7 before proceeding.

Component Replacement

Power Cord Installation

1. Strip and prepare the power cord wires as shown below:

![Power cord diagram]

<table>
<thead>
<tr>
<th>Standard Unit</th>
<th>CE Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Black</td>
<td>Black (U)</td>
</tr>
<tr>
<td>L2 White</td>
<td>Blue (V)</td>
</tr>
<tr>
<td>L3 Red</td>
<td>Brown (W)</td>
</tr>
<tr>
<td>PE Green</td>
<td>Green/Yellow</td>
</tr>
</tbody>
</table>

2. Connect power cord to power switch.
 Note: Select the smallest strain relief insert that fits on to the power cord.

![Power switch diagram]

Plug Installation

The plug must be connected to the power cord by a licensed electrician.
Torch Installation

1. Turn OFF power.

2. Remove power cord from power receptacle.

3. Open Easy Torch Removal (ETR) door and route lead through the end cap.
4. Align marks on strain relief.

5. Pull back quick-release collar and insert the lead’s gas fitting.

6. Slide quick-release collar forward to lock the gas fitting in place. Make sure that the gas fitting is secure.

7. Make sure that the red dot on the connector is on top, then plug in the electrical connector. Close ETR door.
Filter Element Replacement

1. Disconnect electrical power and gas supply. Remove filter bowl on new and old filter.
 A. Pull down black release tab and hold.
 B. Rotate filter bowl until it is released.
 C. Pull filter bowl down to remove. Do not discard the O-ring.

2. Remove the filter element (Part No. 011092) from the filter housing.
 NOTE: Do not allow the filter element to turn when loosening the screw.

3. Install filter bowl.
 A. Slide filter bowl over filter element.
 B. Align marks on filter bowl and filter body.
 C. Rotate filter bowl until it locks in place.
Work Cable Replacement

Disconnect electrical power, gas supply, torch lead, and remove ETR barrier before removing the old work cable.

Installation – Refer to figure below.

1. Install the strain relief to the power supply and secure with nut.

2. Tighten the strain relief collar onto the cable.

3. Connect the work cable to the power board at J14. Tighten nut to 10 in-lb (12 kg cm) of torque.

4. Install ETR barrier

5. Install the power supply cover.

CAUTION: This is a high-current connection. Proper torque is critical.
Capacitor Replacement

Removal – Refer to figure below.

Disconnect electrical power and gas supply before removing the power supply cover.

Remove screws securing capacitor to power board.

Remove capacitor from fan side of power supply.

Remove lower capacitor first. Then the upper capacitor may be tipped down and removed.

Installation – Refer to figure below.

Align bleeder hole on capacitor with view hole on power board.

Install new capacitor and secure with 2 screws. Tighten screws to 30 inch pounds (36 kg cm).

Install the power supply cover.
Heat Sink Component Replacement

Installation

- Install components to the heat sink as shown below.

- Use new thermal pads on temperature sensor.

- Use white thermal grease (Part no. 330002) on all components except for IGBT, PFC (Part no. 128745). Use grey thermal grease (Part no. 128836) on IGBT, PFC, see Note 3. Apply a thin coat to the component, install with screws, and tighten to required torque. Note: Remix grease if material separates.

- Re-torque after 2 minutes. Repeat until torque is maintained. Clean excess grease from heat sink.

Notes:
1. Apply white thermal grease DC-340 (Part no. 027662) and torque to 8 in-lb (9 kg cm.)
2. Apply white thermal grease DC-340 (Part no. 027662) and torque to 35 in-lb (40 kg cm).
3. Apply grey thermal grease TC-330 (Part no. 128836) and torque to 35 in-lb (40 kg cm).
 Note: grey thermal grease TC-330 is included with PFC IGBT Replacement Kit (Part no. 128745)
In this section:

Exterior ... 4-2
Interior Right Side ... 4-3
Back Interior Right side ... 4-4
Interior Fan Side .. 4-5
Heat Sink Assembly .. 4-6
Recommended Spare Parts ... 4-7
Power Supply – Exterior

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Designator</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128750</td>
<td>Label Kit, Domestic</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>128758</td>
<td>Label Kit, CE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>128766</td>
<td>Front end panel, Domestic</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>128765</td>
<td>Front end panel, CE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>008965</td>
<td>Current adjustment knob</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>110413</td>
<td>Control Panel Label</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128735</td>
<td>End cap screws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>123645</td>
<td>Ground clamp</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>011096</td>
<td>Regulator knob</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>128740</td>
<td>Power supply cover with labels, Domestic</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>128762</td>
<td>Power supply cover with labels, CE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>128629</td>
<td>Cover screws</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>128742</td>
<td>Rear end panel</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Power Supply – Interior Right Side

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Designator</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128736</td>
<td>Control PCB assembly, Domestic</td>
<td>PCB3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>128659</td>
<td>Pressure Transducer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>128801</td>
<td>Pressure Regulator</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128699</td>
<td>Pilot Arc IGBT Gate Drive Cable</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>128810</td>
<td>ETR Box</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>128622</td>
<td>Gas Manifold</td>
<td>V1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>046116</td>
<td>Tubing, 8mm OD, 6mm ID, nylon</td>
<td></td>
<td>3 ft.</td>
</tr>
<tr>
<td>8</td>
<td>108211</td>
<td>On/Off Knob</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>128665</td>
<td>Strain relief, arc voltage</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>128662</td>
<td>Machine interface</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>128737</td>
<td>Power PCB</td>
<td>PCB2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>123602</td>
<td>Gate Drive Cables</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Power Supply – Back interior right side

<table>
<thead>
<tr>
<th>Item</th>
<th>Part number</th>
<th>Description</th>
<th>Designator</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128757</td>
<td>Front caster</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>128763</td>
<td>Rear axel</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>128764</td>
<td>Rear wheel replacement</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>128706</td>
<td>EMI filter PCB, CE only</td>
<td>PCB1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>128672</td>
<td>Power switch CSA</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>128761</td>
<td>Power switch CE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Power Supply – Interior Fan Side

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Designator</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>128627</td>
<td>Filter bowl</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>011093</td>
<td>Air filter element</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>011094</td>
<td>O-ring</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>128749</td>
<td>Inductor, input choke</td>
<td>L2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>128741</td>
<td>Capacitor</td>
<td>T2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128739</td>
<td>Power transformer</td>
<td>L1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>128749</td>
<td>Inductor, output choke</td>
<td>M1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>128683</td>
<td>Fan subassembly</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Power Supply – Heat Sink Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Designator</th>
<th>Qty.</th>
</tr>
</thead>
<tbody>
<tr>
<td>027662</td>
<td>027662</td>
<td>Thermal grease, 5 oz. DC-340</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>128733</td>
<td>Output diode bridge</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>128747</td>
<td>Snubber resister assembly</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>128743</td>
<td>IGBT, inverter</td>
<td>Q13</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128744</td>
<td>Temperature Switch</td>
<td>PCB4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>128745</td>
<td>IGBT, PFC</td>
<td>Q14</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>128746</td>
<td>Input diode bridge</td>
<td>D24</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>128748</td>
<td>IGBT, pilot arc</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>128734</td>
<td>Snubber resister</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>129782</td>
<td>Snubber resister</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Reference page 3-26 for torque specifications.
Recommended Spare Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>128689</td>
<td>Front end panel, Domestic</td>
<td>4-2</td>
</tr>
<tr>
<td>128750</td>
<td>Label Kit, Domestic</td>
<td>4-2</td>
</tr>
<tr>
<td>128758</td>
<td>Label Kit, CE</td>
<td>4-2</td>
</tr>
<tr>
<td>128766</td>
<td>Front end panel, Domestic</td>
<td>4-2</td>
</tr>
<tr>
<td>128765</td>
<td>Front end panel, CE</td>
<td>4-2</td>
</tr>
<tr>
<td>008965</td>
<td>Current adjustment knob</td>
<td>4-2</td>
</tr>
<tr>
<td>110413</td>
<td>Control Panel Label</td>
<td>4-2</td>
</tr>
<tr>
<td>128735</td>
<td>End cap screws</td>
<td>4-2</td>
</tr>
<tr>
<td>123645</td>
<td>Ground clamp</td>
<td>4-2</td>
</tr>
<tr>
<td>011096</td>
<td>Regulator knob</td>
<td>4-2</td>
</tr>
<tr>
<td>128740</td>
<td>Power supply cover with labels, Domestic</td>
<td>4-2</td>
</tr>
<tr>
<td>128762</td>
<td>Power supply cover with labels, CE</td>
<td>4-2</td>
</tr>
<tr>
<td>128629</td>
<td>Cover screws</td>
<td>4-2</td>
</tr>
<tr>
<td>128742</td>
<td>Rear end panel</td>
<td>4-2</td>
</tr>
<tr>
<td>128736</td>
<td>Control PCB assembly, Domestic</td>
<td>4-3</td>
</tr>
<tr>
<td>128659</td>
<td>Pressure Transducer</td>
<td>4-3</td>
</tr>
<tr>
<td>128801</td>
<td>Pressure Regulator</td>
<td>4-3</td>
</tr>
<tr>
<td>128699</td>
<td>Pilot Arc IGBT Gate Drive Cable</td>
<td>4-3</td>
</tr>
<tr>
<td>128810</td>
<td>ETR Box</td>
<td>4-3</td>
</tr>
<tr>
<td>128622</td>
<td>Gas Manifold</td>
<td>4-3</td>
</tr>
<tr>
<td>046116</td>
<td>Tubing, 8mm OD, 6mm ID, nylon</td>
<td>4-3</td>
</tr>
<tr>
<td>108211</td>
<td>On/Off Knob</td>
<td>4-3</td>
</tr>
<tr>
<td>128665</td>
<td>Strain relief, arc voltage</td>
<td>4-3</td>
</tr>
<tr>
<td>128662</td>
<td>Machine interface</td>
<td>4-3</td>
</tr>
<tr>
<td>128737</td>
<td>Power PCB</td>
<td>4-3</td>
</tr>
<tr>
<td>123602</td>
<td>Gate Drive Cables</td>
<td>4-3</td>
</tr>
<tr>
<td>128757</td>
<td>Front Caster</td>
<td>4-4</td>
</tr>
<tr>
<td>128763</td>
<td>Rear Axle</td>
<td>4-4</td>
</tr>
<tr>
<td>128764</td>
<td>Rear Wheel</td>
<td>4-4</td>
</tr>
<tr>
<td>128706</td>
<td>EMI Filter PCB, CE only</td>
<td>4-4</td>
</tr>
<tr>
<td>128672</td>
<td>Power switch</td>
<td>4-4</td>
</tr>
<tr>
<td>128627</td>
<td>Filter bowl</td>
<td>4-5</td>
</tr>
<tr>
<td>011093</td>
<td>Air filter element</td>
<td>4-5</td>
</tr>
<tr>
<td>011094</td>
<td>O-ring</td>
<td>4-5</td>
</tr>
<tr>
<td>128749</td>
<td>Inductor, input choke</td>
<td>4-5</td>
</tr>
<tr>
<td>128741</td>
<td>Capacitor</td>
<td>4-5</td>
</tr>
<tr>
<td>128739</td>
<td>Power transformer</td>
<td>4-5</td>
</tr>
<tr>
<td>128749</td>
<td>Inductor, output choke</td>
<td>4-5</td>
</tr>
<tr>
<td>128683</td>
<td>Fan subassembly</td>
<td>4-5</td>
</tr>
<tr>
<td>027662</td>
<td>Thermal grease, 5 oz. DC-340</td>
<td>4-6</td>
</tr>
<tr>
<td>330080</td>
<td>Thermal grease, 5 oz. TC-330</td>
<td>4-6</td>
</tr>
<tr>
<td>128733</td>
<td>Output diode bridge</td>
<td>4-6</td>
</tr>
<tr>
<td>128747</td>
<td>Snubber resister assembly</td>
<td>4-6</td>
</tr>
<tr>
<td>128743</td>
<td>IGBT, inverter</td>
<td>4-6</td>
</tr>
<tr>
<td>128744</td>
<td>Temperature Switch</td>
<td>4-6</td>
</tr>
<tr>
<td>128745</td>
<td>IGBT, PFC</td>
<td>4-6</td>
</tr>
<tr>
<td>128746</td>
<td>Input diode bridge</td>
<td>4-6</td>
</tr>
<tr>
<td>128748</td>
<td>IGBT, pilot arc</td>
<td>4-6</td>
</tr>
<tr>
<td>128734</td>
<td>Snubber resister</td>
<td>4-6</td>
</tr>
<tr>
<td>129782</td>
<td>Snubber resister</td>
<td>4-6</td>
</tr>
</tbody>
</table>
In this section:

T100 Hand Torch Assembly ... 5-2
T100M Machine Torch Assembly ... 5-4
Torch Consumable Configurations ... 5-6
Recommended Spare Parts ... 5-8
T100 Hand Torch Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>059264*</td>
<td>T100 Hand Torch Assembly with 25 ft (7.6 m) Lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>059270*</td>
<td>T100 Hand Torch Assembly with 50 ft (15.2 m) Lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128767</td>
<td>T100 Torch Main Body Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>027889</td>
<td>Retaining Clip</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>058519</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128639</td>
<td>Cap-off Sensor Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>075571</td>
<td>Cap-off Sensor screws</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>128768</td>
<td>T100/T100M Torch Head Repair Kit</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>128756</td>
<td>Handle Kit</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>075586</td>
<td>Handle screws</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>002244</td>
<td>Safety Trigger</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>027254</td>
<td>Trigger Spring</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>128755</td>
<td>25 ft (7.6 m) Torch Lead Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>128752</td>
<td>50 ft (15.2 m) Torch Lead Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>128638</td>
<td>ETR Repair Kit (Regional Repair Centers only)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>128642</td>
<td>Start Switch Replacement Kit</td>
<td>1</td>
</tr>
</tbody>
</table>

* Top assembly includes the following consumables (See page 5-6 for details of consumable parts):

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>220051</td>
<td>Swirl Ring</td>
<td>1</td>
</tr>
<tr>
<td>220037</td>
<td>Electrode</td>
<td>1</td>
</tr>
<tr>
<td>220011</td>
<td>Nozzle</td>
<td>1</td>
</tr>
<tr>
<td>220048</td>
<td>Retaining Cap</td>
<td>1</td>
</tr>
<tr>
<td>220065</td>
<td>Shield</td>
<td>1</td>
</tr>
</tbody>
</table>
T100M Machine Torch Assembly

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>059265*</td>
<td>T100M Machine Torch Assembly with 25 ft (7.6 m) Lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>059268*</td>
<td>T100M Machine Torch Assembly with 35 ft (10.7 m) Lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>059272*</td>
<td>T100M Machine Torch Assembly with 50 ft (15.2 m) Lead</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128754</td>
<td>T100M Torch Main Body Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>027889</td>
<td>Retaining Clip</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>058519</td>
<td>O-ring</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>128639</td>
<td>Cap-off Sensor Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>075571</td>
<td>Cap-off Sensor Screws</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>128768</td>
<td>T100/T100M Torch Head Repair Kit</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>128643</td>
<td>Torch Mounting Sleeve Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>075004</td>
<td>Torch Mounting Screws</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>128710</td>
<td>Torch Positioning Sleeve</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>128753</td>
<td>25 ft (7.6 m) Torch Lead Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>128751</td>
<td>35 ft (10.7 m) Torch Lead Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>128759</td>
<td>50 ft (15.2 m) Torch Lead Replacement Kit</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>128638</td>
<td>ETR Repair Kit (Regional Repair Centers only)</td>
<td>1</td>
</tr>
<tr>
<td>128645</td>
<td>Torch Mounting Kit (for reassembly after installation)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* Top assembly includes the following consumables (See page 5-6 for details of consumable parts):

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>220051</td>
<td>Swirl Ring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>220037</td>
<td>Electrode</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>220011</td>
<td>Nozzle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>220048</td>
<td>Retaining Cap</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>220047</td>
<td>Shield</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Torch Consumable Configurations

Hand-Held, Shielded

- **40A**
 - Shield: 120929
 - Retaining Cap: 120928
 - Nozzle: 120932
 - Electrode: 120926
 - Swirl Ring: 120925

- **60A**
 - Shield: 120929
 - Retaining Cap: 120928
 - Nozzle: 120931
 - Electrode: 120926
 - Swirl Ring: 120925

- **80A**
 - Shield: 120929
 - Retaining Cap: 120928
 - Nozzle: 120927
 - Electrode: 120926
 - Swirl Ring: 120925

- **100A**
 - Shield: 220065
 - Retaining Cap: 220048
 - Nozzle: 220011
 - Electrode: 220037
 - Swirl Ring: 220051

Gouging

- **60A**
 - Shield: 120977
 - Retaining Cap: 120928
 - Nozzle: 220059
 - Electrode: 120926
 - Swirl Ring: 120925

- **80A**
 - Shield: 120977
 - Retaining Cap: 120928
 - Nozzle: 120978
 - Electrode: 120926
 - Swirl Ring: 120925

- **100A**
 - Shield: 120977
 - Retaining Cap: 220048
 - Nozzle: 220063
 - Electrode: 220037
 - Swirl Ring: 220051
Torch Consumable Configurations

Shielded, Mechanized

<table>
<thead>
<tr>
<th>Current</th>
<th>Shield</th>
<th>Retaining Cap</th>
<th>Nozzle</th>
<th>Electrode</th>
<th>Swirl Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A</td>
<td>120930</td>
<td>120928*</td>
<td>120932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60A</td>
<td>120930</td>
<td>120928*</td>
<td>120931</td>
<td>120926</td>
<td>120925</td>
</tr>
<tr>
<td>80A</td>
<td>120930</td>
<td>120928*</td>
<td>120927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td>220047</td>
<td>220048*</td>
<td>220011</td>
<td>220037</td>
<td>220051</td>
</tr>
</tbody>
</table>

- O-Ring 058519

Shielded, Ohmic Sensing Retaining Cap

<table>
<thead>
<tr>
<th>Current</th>
<th>Shield</th>
<th>Retaining Cap</th>
<th>Nozzle</th>
<th>Electrode</th>
<th>Swirl Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A</td>
<td>120930</td>
<td>120928*</td>
<td>120932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60A</td>
<td>120930</td>
<td>120928*</td>
<td>120931</td>
<td>120926</td>
<td>120925</td>
</tr>
<tr>
<td>80A</td>
<td>120930</td>
<td>120928*</td>
<td>120927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td>220047</td>
<td>220048*</td>
<td>220011</td>
<td>220037</td>
<td>220051</td>
</tr>
</tbody>
</table>

- Use an ohmic sensing cap when a compatible torch height controller is installed.

Unshielded

<table>
<thead>
<tr>
<th>Current</th>
<th>Shield</th>
<th>Retaining Cap</th>
<th>Nozzle</th>
<th>Electrode</th>
<th>Swirl Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>40A</td>
<td>120979</td>
<td>120928</td>
<td>220066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60A</td>
<td>120979</td>
<td>120928</td>
<td>220007</td>
<td>120926</td>
<td>120925</td>
</tr>
<tr>
<td>80A</td>
<td>120979</td>
<td>120928</td>
<td>120980</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100A</td>
<td>120979</td>
<td>220048</td>
<td>220064</td>
<td>220037</td>
<td>220051</td>
</tr>
</tbody>
</table>

- O-Ring 058519

**In CE countries, unshielded consumables may only be used in mechanized torch applications.

Maintain torch-to-work distance of approximately 3/16 inch (4.8 mm).
Recommended Spare Parts

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>058519</td>
<td>Torch O-Ring</td>
</tr>
<tr>
<td>027055</td>
<td>Silicone Lubricant, 1/4 Oz. Tube</td>
</tr>
<tr>
<td>128756</td>
<td>T100 Torch Handle Replacement Kit</td>
</tr>
<tr>
<td>128638</td>
<td>ETR Connector Replacement Kit (Regional Repair Centers only)</td>
</tr>
<tr>
<td>075586</td>
<td>Torch Handle Screw (5 required)</td>
</tr>
<tr>
<td>002244</td>
<td>Safety Trigger</td>
</tr>
<tr>
<td>027254</td>
<td>Trigger Spring</td>
</tr>
<tr>
<td>128642</td>
<td>Start Switch Replacement Kit</td>
</tr>
<tr>
<td>128767</td>
<td>T100 Hand Torch Main Body Replacement Kit</td>
</tr>
<tr>
<td>128754</td>
<td>T100M/T100M Machine Torch Main Body Replacement Kit</td>
</tr>
<tr>
<td>128768</td>
<td>T100/T100M Torch Head Repair Kit</td>
</tr>
<tr>
<td>027889</td>
<td>Retaining Clip</td>
</tr>
<tr>
<td>128639</td>
<td>Cap-off Sensor Replacement Kit</td>
</tr>
<tr>
<td>075571</td>
<td>Cap-off Sensor Screws</td>
</tr>
<tr>
<td>020620</td>
<td>Torch Positioning Sleeve, 32 Pitch, 10 Inches Rack (Standard)</td>
</tr>
<tr>
<td>120668</td>
<td>Torch Positioning Sleeve without Rack, 1-3/8 Inches Diameter</td>
</tr>
<tr>
<td>075004</td>
<td>Torch Mounting Screws</td>
</tr>
<tr>
<td>059264</td>
<td>T100 Hand Torch Assembly with 25 ft (7.6 m) Lead</td>
</tr>
<tr>
<td>059270</td>
<td>T100 Hand Torch Assembly with 50 ft (15.2 m) Lead</td>
</tr>
<tr>
<td>128755</td>
<td>T100 Hand Torch Replacement Lead 25 ft (7.6 m)</td>
</tr>
<tr>
<td>128752</td>
<td>T100 Hand Torch Replacement Lead 50 ft (15.2 m)</td>
</tr>
<tr>
<td>059265</td>
<td>T100M Machine Torch Assembly with 25 ft (7.6 m) Lead</td>
</tr>
<tr>
<td>059268</td>
<td>T100M Machine Torch Assembly with 35 ft (10.7 m) Lead</td>
</tr>
<tr>
<td>059272</td>
<td>T100M Machine Torch Assembly with 50 ft (15.2 m) Lead</td>
</tr>
<tr>
<td>128753</td>
<td>T100M Machine Torch Replacement Lead 25 ft (7.6 m)</td>
</tr>
<tr>
<td>128751</td>
<td>T100M Machine Torch Replacement Lead 35 ft (10.7 m)</td>
</tr>
<tr>
<td>128759</td>
<td>T100M Machine Torch Replacement Lead 50 ft (15.2 m)</td>
</tr>
<tr>
<td>128643</td>
<td>Torch Mounting Sleeve Replacement Kit</td>
</tr>
<tr>
<td>128645</td>
<td>Torch Mounting Kit (for reassembly after installation)</td>
</tr>
</tbody>
</table>
Section 6

WIRING DIAGRAMS

In this section:

Timing Diagrams..6-2
Electrical Schematic...6-4
NORMAL MODE

1. 200ms DELAY IS FOR TORCH LEAD PRESSURIZATION.
2. CURRENT (I) VALUES SHOWN FOR 100A UNIT.
CPA OPERATION
NOTE: UNIT IS ALREADY IN TRANSFER MODE

- Digitized EA
 - ≥ 3FFh
 - Must be ≥ 10ms

- PA
 - 1ms
 - Must be ≤ 28us

- Icommand
 - 1ms
 - Setpoint
 - 40A
 - 30A
 - 21.5A
 - 30A
 - Reattach causes transfer
 - If > 10.00 sec CPA timeout

- Digitized XFR signal in DSP
 - 1ms

- I SETPOINT
 - I work lead 30A
 - 1.6A
 - 0.4A
 - 2.17A/ms

- NOTE: UNIT IS ALREADY IN TRANSFER MODE