Electrode

<table>
<thead>
<tr>
<th>Underused</th>
<th>Still usable</th>
<th>Fully used</th>
<th>Overused</th>
</tr>
</thead>
<tbody>
<tr>
<td>A new electrode wears rapidly for the first 10% of life.</td>
<td>Even with little use, it is normal for an electrode to show marks and discoloration.</td>
<td>The hafnium is eroded, but copper is intact.</td>
<td>Unacceptable cut quality and angularity on cut.</td>
</tr>
<tr>
<td>Copper body should remain clean and shiny even at end of life; signs of grayish heat discoloration could indicate a cooling issue within the torch.</td>
<td>Make sure the o-ring(s) feel flexible and lubricated at all times. Heat can affect o-rings after use.</td>
<td>Color is dark, and/or white. Some cut quality is lost, with increased angularity on the cuts.</td>
<td>When pit depth gets too deep, heat transfer properties start to fail and electrode melts rapidly and causes misfires. This is close to a full blow-out and severe failure of all consumables and potentially the torch and system.</td>
</tr>
<tr>
<td></td>
<td>The hafnium insert should not lose its circular shape and should be fully centered.</td>
<td></td>
<td>The material around the hafnium is eroded and a crater has formed at the tip of the electrode.</td>
</tr>
</tbody>
</table>

SilverPlus
- Pit-depth is approximately half life.
- Pit-depth should be less than 2 mm (.080”).
- Pit-depth is greater than 3 mm (.100”).

Copper
- Pit-depth is approximately half life.
- Pit-depth should be less than ~.9 mm (.035”).
- Pit-depth is greater than 2 mm (.060”).

Nozzle

Top:
- The orifice bore is perfectly round with sharp edges and no nicks.
- Cut quality is still optimal.
- The nozzle loses its round orifice, becoming oval or with notches.
- Too much debris and contamination inside the nozzle obstructs the flow of plasma.

Internal:
- Gas impurities, hafnium wear off, and some black or gray swirl marks are normal.
- Orifices should be round with no nicks or heavy arc marks.
- Any white material is hafnium oxide and can be easily cleaned out.
- Excessive debris and contamination inside the nozzle obstructs the flow of plasma.

Shield

The internal and external orifices are round with sharp edges, and the bleed orifices are not plugged.
- Use a light spray of water based anti spatter spray on front of the shield after installed; this can minimize spatter build-up.
- The shield loses its round orifice and sharp edges, becoming oval or with notches. Too much debris and contamination inside the shield will obstruct the flow of plasma.
- Replace shield if any deep scratches or gouges present. This may indicate the torch has crashed into the plate.

The internal and external orifices are round, and the bleed orifices are not plugged.
- It is good practice to polish the front face of the shield with an abrasive pad to minimize spatter sticking to it.
- The shield loses its round orifice and sharp edges, becoming oval or with notches. This can cause nozzle orifice damage during pilot arc because the arc is not centered. Replace shield if any deep scratches or gouges present. This may indicate the torch has crashed into the plate.

The internal orifice is perfectly round with sharp edges and non-nicks.
- Cut quality is still optimal.
- Too much debris and contamination inside the nozzle obstructs the flow of plasma.

© 6/2019 Hypertherm, Inc. Revision 2
897670